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Chapter 1

Error correcting codes

Whenever data is transmitted or stored, errors can happen randomly, with
usually little to no control over it. It happens when reading data from CDs,
using the internet, satellite transmissions and even when sending data from
space probes. Often, especially when it is slow or even impossible to request
the same data again, one uses error correcting codes to be able to correct most
errors.

The most basic code just repeats the same bits multiple times: If there is
a zero in the data, we could instead send five zeroes right after another. Even
if two bits of every message, forty percent of the received data, are incorrect,
we can still be quite sure what the original message was. While this would be
very easy to implement, it was shown early on it is a very inefficient way to
do error correction. Instead one uses an error correcting code C, a subset of
{0, . . . , q − 1}n such that every element, called word, has a minimum Hamming
distance of d ∈ N to every other word:

d(x, y) = |{i ∈ {1, . . . , n} | xi 6= yi}| ≥ d
If we always decode received words as the nearest word of the code, we can
correct up to bd−1

2 c errors.

The goal is then to maximize the amount of words at a certain minimum
distance and block length n, or to maximize the rate logq |C|

n for a fixed fractional
minimum distance minx6=y d(x,y)

n . Codes of this type were discussed by plenty of
authors before, and new developments are still being made.

This thesis will take a look at a closely related problem, where we have
two sets of data: one of them small but important, the other larger but less
important. Examples include control signals compared to the payload data for
internet/phone/satellite connections, as well as TCP headers and their data
sections. Another example are multiple resolution source codes, which send
data (for example video or audio streams) at multiple different levels of quality
at once, such that the receiver can always decode it at a level according to his
connection speed and quality. Here it makes sense to protect the lower resolution
more, since the amount of data is much lower anyway, allowing everyone to at
least reconstruct a crude version of the data.
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CHAPTER 1. ERROR CORRECTING CODES 2

1.1 Unequal error protection

In the papers [1] and [2] the authors introduce two variants of unequal error
protection (UEP) codes, and prove multiple bounds for asymptotic rates of
these codes. The first variant is called bit-wise UEP, in which every message is
split into two parts, a "special", important part and a less important, usually
larger part. We denote an element of this code as a pair (x, y) ∈ {0, . . . , q−1}n,
were x is the decoded first part of the message, and y the second. In general it
does not imply the words of the code need to have this split structure, but we
do have a bijection

M = M1 ×M2 → C

from the messages M we want to encode to the code C itself.

To realize the different strengths we want any two words to have a large
distance D if their important parts are different:

d
(
(c1, c2), (c′1, c′2)

)
≥ D ∀c1, c2, c′1, c′2 with c1 6= c′1

and at least a (smaller) distance d if their less important parts are different. For
example in the case M1 = {0, 1} we have a single special bit, which means that
we want to find two equal sized sets of words with distance D to each other,
and distance d between the words of the same set.

≥ D

1×M2

0×M2

≥ d

This variant of UEP was explored before by multiple authors (see [1] for a
detailed list) for the linear case, since it offers itself well for TCP and multiple
resolution codes. For the general one-bit case an upper bound for D

n (which
is strictly greater d

n in most cases) was proven in [2] such that the maximum
rate of an ordinary block code of fractional distance d

n can still be reached
asymptotically.
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The second variant, message-wise UEP, which is the focus of this thesis, was
discussed less often, but does have potential. Here we want to protect certain
code words more than others, instead of packing two messages into each word,
meaning we split the Code into two sets C = C1 ∪ C2. Here we want all words
in C1 to have minimum distance D to all other words, and the same for the
words in C2 for a smaller distance d:

d(c, c′) ≥ D ∀c ∈ C1, c
′ ∈ C \ {c}

d(c, c′) ≥ d ∀c ∈ C2, c
′ ∈ C \ {c}

While this might look similar to a multi-size sphere packing at first, notice here
that the distance between elements in C1 and C2 has to be the larger distance
D as between different elements of C1, instead of the sum of the two radii as in
the sphere packing case.

≥ D

≥ D

C1

C2

≥ d

This actually makes it harder to decide when such a code is "good". We
cannot just try to fill as much space as possible (by using different weights, as
for sphere packings), since that would make it either prefer only small or only
large words. In other literature the goal is usually to find a series of codes
satisfying two chosen rates at the same time.

Instead we can fix the cardinality of C1 to be 1, the case of a single special
word, and try to maximize the amount of words in C2 (or maximize D for fixed
|C2|). This case was was studied in [2] too, in connection with asymptotic rates.
They have proven we can always asymptotically reach the optimal rate of a code
with fractional distance d

n , even with D = n, if we can increase the size q of the
alphabet of the code. Furthermore, and more interestingly, they have shown
that if we only consider binary alphabets, then we can still reach the optimal
rate asymptotically for at least D = n

2 . This bound is sharp for d = 0 and they
expect that it is sharp for any d

n ∈ [0, 1
2 ].
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The goal of this thesis will be to study this case further, and determine upper
bounds for |C2| for small values of n, giving us some more insight in how fast
we can approach the optimal rate.

1.2 A graph problem

For this thesis we decided to focus on the case message-wise UEP, with a single
special word, and a binary alphabet. Because of the symmetry of this problem,
we can always set the special word to be the all zero word 0n. Calling the
non-special word set C, we get the following problem:

A(n,D, d) := max |C|
d(c1, c2) ≥ d ∀c1, c2 ∈ C
d(0n, c) ≥ D ∀c ∈ C
C ⊆ {0, 1}n

For integers D ≥ d and dimension n. We can lower the amount of variables by
replacing the second condition with a restriction on the set the words are chosen
from:

A(n,D, d) = max |C|
d(c1, c2) ≥ d ∀c1, c2 ∈ C
C ⊆ {0, 1}n≥D := {x ∈ {0, 1}n | |x| ≥ D}

We now want to reformulate this problem as a graph problem, since relax-
ations for these are well explored. The independence number α of a graph is
the largest number of vertices you can choose, such that no two chosen vertices
are adjacent. We can easily construct a graph Gn,D,d = (V,E) for our problem
by setting

V = {0, 1}n≥D
E = {(x, y) ∈ V × V | d(x, y) < d}

Two vertices of this graph are adjacent, if and only if their Hamming distance is
less than d. Hence independent sets in this graph are exactly the feasible codes
of our problem:

A(n,D, d) = α(Gn,D,d)
Calculating the independence number is NP-complete, and our graph has ex-
ponential size, which makes this problem too hard to solve exactly. Instead we
will calculate an upper bound for it, the Lovász-Theta number, which is the
semidefinite relaxation of the independence number.

1.3 The Lovász-Theta number

The independence number can be reformulated with the matrices X = 1
xT x

xxT ,
where x ∈ {0, 1}V is the characteristic vector of the vertices in C. These ma-
trices are positive semidefinite as they are outer products of vectors with them-
selves.
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Lemma 1.3.1.

α(G) = max 〈J,X〉
tr(X) = 1
Xij = 0 ∀(i, j) ∈ E
rank(X) = 1
X < 0

Proof. To verify the upper bound it is enough to set X = 1
xT x

xxT , as was
mentioned before, which is feasible for this program.

Let X now be a feasible solution of this program. The rank of X is one, so
there is a vector a with X = aaT . We have Xij = aiaj = 0 for every edge of
the graph, thereby the support of a is an independent set of the graph. The
objective function 〈J,X〉 = (eTa)2 is maximized if and only if a is parallel to
its own support, so we can now scale the vector a to have only entries in {0, 1},
let this vector be x. Because of tr(X) = aTa = 1 we have a = x√

xT x
, which lets

us reformulate the objective function:

〈J,X〉 = (eTa)2 =
(

eTx√
xTx

)2

= 1
xTx

(eTx)2 = eTx

Which is the size of the independent set given by the vector’s support

We can now relax this to a semidefinite program by removing the condition
to the rank of the matrix:

Theorem 1.3.2. Let G = (V,E) be a graph. Then:

α(G) ≤ ϑ′(G) = max 〈J,X〉 ≤ ϑ(G) = max 〈J,X〉
tr(X) = 1 tr(X) = 1
Xij = 0 ∀ij ∈ E Xij = 0 ∀ij ∈ E
X ∈ SV<0 X ∈ SV<0

X ≥ 0

The function ϑ is called Lovász theta function, and was first introduced in
[8] by László Lovász. The prime variant is a strengthening of the bound towards
the independence number, but it does add a condition for every entry of the
matrix.

Semidefinite programs can be (approximately) solved in polynomial time,
but the size of our graph is still exponential in n. In this case we can simplify
the program further by taking into account the symmetry of the problem.



Chapter 2

General symmetry
reductions

In this chapter we explain the general approach to take advantage of symmetry
of semidefinite programs, following closely Vallentin’s approach in [14] and [13].
The section about representation theory additionally has some parts similar to
chapter one of Sagan’s book [10].

We start with a general semidefinite program of the form

p = sup 〈C,X〉
〈Ai, X〉 = bi ∀i = 1, . . . , n
X < 0

where the matrices are indexed by a set V . For this thesis it is enough to only
consider real matrices, but everything can be generalized to complex numbers
with slight changes. Let Γ be a group that acts on V by permutations, which
we can extend to an operation on matrices by π(X)ij = Xπ−1(i)π−1(j), which is
exactly the matrix PTπ XPπ if Pπ is the permutation matrix corresponding to π
(So (Pπ)ij = 1⇔ π(i) = j). We call the program Γ-invariant, if π(X) is feasible
for every feasible X, and 〈C,X〉 = 〈C, π(X)〉. For our problem we will later see
that Γ is exactly the group of graph-automorphisms of our graph.

Because of the convexity of the program we can symmetrize an optimal solu-
tion X∗ of an invariant program by forming the group average 1

|Γ|
∑
π∈Γ π(X∗)

to get another optimal feasible solution. That means that we can restrict our
program to only have invariant feasible solutions, that is to say matrices with
π(X) = X for all π ∈ Γ. Lets call this subspace of invariant matrices B.

p = sup 〈C,X〉
〈Ai, X〉 = bi ∀i = 1, . . . , n
X < 0
X ∈ B

We can define a first basis of B, called the canonical basis, by decomposing

6
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V × V into its Γ-orbits, and defining the basis elements as their characteristic
functions: (

B[x,y]
)
i,j

:=
{

1 if (i, j) ∈ [x, y]
0 else

where [x, y] ∈ V := (V × V )�Γ is the Γ-orbit of (x, y) ∈ V × V . It is clear this
is a basis for B, and we have BT[x,y] = B[y,x] by definition. We only consider
symmetric matrices in our program, hence we can combine their optimization
variables in the following way:

p = sup
∑
r∈V

crzr∑
r∈V

airzr = bi ∀i = 1, . . . , n∑
r∈V

zrBr < 0

zr ∈ R ∀r ∈ V
z[x,y] = z[y,x] ∀[x, y] ∈ V

The new coefficients are defined as cr := 〈C,Br〉 and air := 〈Ai, Br〉, which
results in the same objective functions and conditions as before.

The space B is closed under matrix multiplication, since for invariant ma-
trices A and B we have π(AB) = PTπ ABPπ = PTπ APπP

T
π BPπ = AB, so AB is

again an invariant matrix. thus this vector space is an algebra, and we will see
next section that there is an algebra isomorphism of the form

ϕ : B →
d⊕
k=1

Rmk×mk

Applying it to our program is called block diagonalization, which results in:

p = sup
∑
r∈V

crzr (2.0.1)∑
r∈V

airzr = bi ∀i = 1, . . . , n∑
r∈V

zrϕ(Br) < 0

zr ∈ R ∀r ∈ V
z[x,y] = z[y,x] ∀[x, y] ∈ V

Often the sum of the mk is much smaller than the dimension of the original
program, significantly reducing the time needed to solve it. In our case we
will be able to go from exponential to quadratic size in the length of the code.
Furthermore a lot of solvers are able to make use of the block structure of the
program, reducing the time needed further.
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2.1 Representation theory

If we want to determine this isomorphism, we first need some representation
theory. We call a vector spaceW a Γ-module, if there is a group homomorphism

ρ : Γ→ GL(W )

So Γ operates on W with linear transformations. We have seen an example
earlier, where we assigned each π ∈ Γ a permutation matrix Pπ, which operates
on RV .

We call a Γ-module W irreducible, if each Γ-submodule of W (Subspaces of
W , which are closed under the operations of Γ) is either {0} or W itself.

The goal is now to decompose a reducible module into irreducible ones. If
we have an inner product 〈·, ·〉 on W and a subspace U ⊂ W , we can form the
orthogonal complement of U :

U⊥ := {w ∈W | 〈u,w〉 = 0 ∀u ∈ U}

We have W = U ⊕ U⊥ = U⊥U⊥, but we do not know if U⊥ is a submodule, if
U is one. If we additionally require the inner product to be Γ-invariant, that is

〈π(v), π(w)〉 = 〈v, w〉 ∀π ∈ Γ, v, w ∈W

we get following proposition:

Proposition 2.1.1. Let W be a Γ-module, U ⊂ W a submodule and 〈·, ·〉 an
Γ-invariant inner product on W . Then U⊥ is also a submodule.

Proof. If π ∈ Γ and v ∈ U⊥, then π(v) is also in U⊥:

〈π(u), v〉 = 〈π−1(π(u)), π−1(v)〉 = 〈u, π−1(v)〉 = 0

since the inner product is invariant, and π−1(v) ∈ U . That means U⊥ is a
subspace closed under Γ, and with that a submodule of W .

Applying this recursively to a reducible module lets us decompose it into
irreducible subspaces. We can always find an Γ-invariant inner product (if Γ is
finite) by taking the group average 〈v, w〉′ =

∑
π∈Γ〈π(v), π(w)〉 of any fixed inner

product 〈·, ·〉. Alternatively we can fix an invariant inner product beforehand,
as we will do later, to get an orthogonal decomposition.

Theorem 2.1.2 (Maschke). If Γ is a finite group and W a (nonzero) Γ-module,
then we can find irreducible submodules Wi of W with

W = W1 ⊕ . . .⊕Wk

A reducible module can have multiple "copies" of the same irreducible sub-
module. If we have two Γ-modules H and H ′ we call them equivalent, if there is
an Γ-isometry φ : H → H ′ between them. An isometry is a linear isomorphism,
which preserves the action of Γ, φ(π(v)) = π(φ(v)), and the inner products,
〈v, w〉 = 〈φ(v), φ(w)〉.
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Let us now fix the module to be RV , where V is the set of vertices of the
graph earlier. The group of symmetries Γ acts on RV by π(v)i = vπ−1(i) (i.e.
π(v) = Pπv), and we get an invariant inner product (v, w) = 1

|V |
∑
i∈V viwi

(because Γ just permutes the indices). Applying Maschke’s Theorem to this
module for this inner product, and sorting the irreducible submodules afterwards
gives us following decomposition:

RV = (H1,1⊥ . . .⊥H1,m1)⊥ . . .⊥(Hd,1⊥ . . .⊥Hd,md
) (2.1.2)

Where all the Hk,i are irreducible Γ-modules, which are equivalent if and only
if their first indices are identical (This decomposition is a special case of the
Peter-Weyl Theorem).

We can now take a look at the algebra A ⊆ RV×V generated by the Pπ for
π ∈ Γ. The Hk,i are closed and irreducible under Γ, so we get A|Hk,i

∼= Rhk×hk

by fixing a basis, where hk is the dimension of Hk,j for all j = 1, . . . ,mk. We
also know that, for a fixed k, the Hk,i are all equivalent, so there are isometries
between Hk,1 and Hk,i for all i. And thus the elements of A operate the same on
all of them, meaning there is an isomorphism such that the blocks corresponding
to the differentHk,i are exact copies. Taking into account the full decomposition
of RV we get a decomposition of A:

A ∼=
d⊕
k=1

Rhk×hk ⊗ Imk

Why have we done this? Earlier we defined B as the set of Γ-invariant
matrices, that is matrices with PTπ APπ = A for all π ∈ Γ. That means it is
exactly the commutant of A:

B = Comm(A) = {X ∈ RV×V | Y X = XY ∀Y ∈ A}

Which means that

B ∼=
d⊕
k=1

Ihk
⊗ Rmk×mk

since Comm(Ik) = Rk×k, Comm(Rk×k) = Ik and (A ⊗ B)(C ⊗ D) = (AC) ⊗
(BD) if the products AC and BD are defined. If we then remove the copies of
the blocks, we get the existence of the before mentioned isomorphism

ϕ : B →
d⊕
k=1

Rmk×mk

for which we now want to find a more explicit formula.

2.2 The Isomorphism in the general case

To determine the isomorphism we want to find a different basis of B, to which
we can assign the entries of the new blocks directly. By the decomposition
(2.1.2) of RV , we can fix orthonormal bases {ek,1,1, . . . , ek,1,hk

} of the Hk,1.
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The isometries φk,i : Hk,1 → Hk,i preserve the inner products, so applying them
to the chosen bases constructs orthonormal bases ek,i,l for the remaining Hk,i.
Such a set of orthonormal bases is called orthonormal system, with which we
can define a second basis Ek,i,j ∈ RV×V of B by

(Ek,i,j)x,y = 1
|V |

hk∑
l=1

ek,i,l(x)ek,j,l(y)

where k = 1, . . . , d and i, j = 1, . . . ,mk.
Theorem 2.2.1. The Ek,i,j form a basis of B and

Ek,i,jEk′,i′,j′ = δk,k′δj,i′Ek,i,j′

Proof. We have

(Ek,i,jEk′,i′,j′)x,y = 1
|V |2

|V |∑
r=1

(
hk∑
l=1

ek,i,l(x)ek,j,l(r)
) hk′∑

l′=1
ek′,i′,l′(r)ek′,j′,l′(y)


= 1
|V |2

hk∑
l=1

hk′∑
l′=1

ek,i,l(x)ek′,j′,l′(y)eTk,j,lek′,i′,l′

= δk,k′δj,i′(Ek,i,j′)x,y
since the vectors are orthonormal for (·, ·). So the matrices have to be linearly
independent and dim(B) =

∑d
k=1m

2
k, as we have seen in the decomposition of

B, therefore they form a basis of B.

Hence we get an algebra isomorphism by

ϕ(Ek,i,j) = 0⊕ . . .⊕ 0⊕ Ei,j︸︷︷︸
k-th block

⊕0⊕ . . .⊕ 0

where Ei,j ∈ Rmk,mk is the matrix with only a one in position (i, j), because

ϕ(Ek,i,jEk′,i′,j′) = δk,k′δj,i′ϕ(Ek,i,j′) = ϕ(Ek,i,j)ϕ(Ek′,i′,j′)

If we now expand the canonical basis in this basis, we can calculate the matrices
ϕ(Br) needed for the block diagonalization:

ϕ(Br) = ϕ(
d∑
k=1

mk∑
i,j=1

pr(k, i, j)Ek,i,j)

=
d∑
k=1

mk∑
i,j=1

pr(k, i, j)ϕ(Ek,i,j)

It is generally easier easier to express the new basis in the canonical basis,
considering we just need to know the value of Ek,i,j in one coordinate of each
orbit in V:

Ek,i,j =
∑
r∈V

qk,i,j(r)Br

But it turns out that we can easily calculate the coefficients pr(k, i, j) if we know
the qk,i,j(r). For this we first need another orthogonality relation:
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Lemma 2.2.2. ∑
r∈V
|r|qk,i,j(r)qk′,i′,j′(r) = δk,k′δj,j′δi,i′hk

Proof. We have∑
r∈V
|r|qk,i,j(r)qk′,i′,j′(r) =

∑
x,y∈V

(Ek,i,j)x,y(Ek′,i′,j′)x,y

Since the Br have exactly |r| one-entries, of which none are in two different basis
elements. By definition we have (Ek′,i′,j′)x,y = (Ek′,j′,i′)y,x, which gives us

=
∑
x,y∈V

(Ek,i,j)x,y(Ek′,j′,i′)y,x =
∑
x∈V

(Ek,i,jEk′,j′,i′)x,x

If we now apply theorem (2.2.1) we can simplify it to:

=
∑
x∈V

δk,k′δj,j′(Ek,i,i′)x,x = δk,k′δj,j′trace(Ek,i,i′)

=δk,k′δj,j′
∑
x∈V

1
|V |

hk∑
l=1

ek,i,l(x)ek,i′,l(x) = δk,k′δj,j′
hk∑
l=1

(ek,i,l, ek,i′,l)

=δk,k′δj,j′δi,i′hk

This allows us to calculate one set of indices from the other:

Proposition 2.2.3.
pr(k, i, j) = |r|

hk
qk,i,j(r)

Proof. By definition of the indices we have:

Ek,i,j =
∑
r∈V

qk,i,j(r)Br

=
∑
r∈V

qk,i,j(r)
d∑

k′=1

mk′∑
i′,j′=1

pr(k′, i′, j′)Ek′,i′,j′

Since the Ek,i,j form a basis we get∑
r∈V

qk,i,j(r)pr(k′, i′, j′) = δk,k′δi,i′δj,j′

Which is the same orthogonality relation (up to a factor) as in Lemma (2.2.2),
hence:

pr(k, i, j) = |r|
hk
qk,i,j(r)
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We now have all the tools for general symmetry reductions we need for this
thesis. To simplify our program, the Lovász-Theta number of the graph defined
in the first section, we will first have to find the symmetry of our program.
Afterwards we will decompose the symmetric matrices into irreducible compo-
nents, which we will use to determine the basis Ek,i,j , and more importantly
the pr(k, i, j) explicitly.



Chapter 3

The decomposition

We want to calculate the Lovász theta (prime) number of the graph Gn,D,d =
(V,E) which was defined as:

V = {0, 1}n≥D
E = {(x, y) ∈ V × V | d(x, y) < d}

The first thing we have to do is to figure out what the group Γ is exactly for
our problem, which acts on V by permutations. In the definition of

ϑ′(G) = max 〈J,X〉
tr(X) = 1
Xij = 0 ∀(i, j) ∈ E
X ∈ SV<0

X ≥ 0

the elements of V appear only in one condition: Xij = 0, if there is an edge
between i and j. Since the program does not differentiate between the edges, we
know that Γ is exactly the group of permutations, which sends pairs of vertices
to an edge if and only if they were connected before. This group is the set of
graph automorphisms of Gn,D,d.

We can find one set of permutations in Γ directly: Permutations that act on
the coordinates of elements in V ⊆ {0, 1}n. These do not change the Hamming
distance between vertices, hence they are graph automorphisms since the edge
set was defined with it only. Furthermore they do not change the Hamming
weight of vertices either, which we will make use of for the decomposition first.

These are in general not all of the automorphisms of the graphs encountered
here. For example if n−D+ 1 < d, the graphs are fully connected. In that case
the automorphism group is the permutation group on the vertices (not just on
the coordinates of the vertices), but we can also just solve it directly. Since all
vertices are connected, every off-diagonal entry of feasible solutions is zero, and
the trace is fixed to one, resulting in the same objective value. It does make
sense, as we can only fit in one codeword in V , because its diameter (for the
Hamming distance) is less than d.

13
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In the case D = 0 (which we will allow, even if we set D ≥ d earlier, since
this case describes ordinary binary codes) we can additionally bit-flip every
coordinate of the vertices, since we do not have a special corner that needs to
be fixed any more, and it does not change the distance between vertices either.

In the general case we might have more automorphisms in some cases, but the
algebra we get by coordinate permutation symmetry was explored well before
(e.g. [14], [12]), and will be enough for this thesis.

So let us fix Γ = Sn for this thesis, which acts by permutation on the co-
ordinates of elements in {0, 1}n. For now let B be the algebra of Γ-invariant
R{0,1}n×{0,1}n matrices. While this is a larger algebra than the invariant matri-
ces in R{0,1}

n
≥D×{0,1}

n
≥D , we will be able to use a diagonalization of B to get all

diagonalizations for the reductions we want later. This algebra B is called the
Terwilliger algebra of the binary Hamming scheme.

3.1 Irreducible Sn-modules

The first thing we have to do is to decompose B into irreducible Sn-modules. To
do this, we will introduce explicit constructions for every irreducible Sn-module,
which are called Specht modules, similarly to Sagan in [10].

To do this we first determine the conjugacy classes of Sn. These are defined
for h ∈ Sn as the set {ghg−1 | g ∈ Sn}. We can describe h using (disjunct)
cycles as

h = (i1, . . . , il) . . . (im, . . . , in)

where the first cycle symbolizes h(i1) = i2, . . . , h(il−1) = il, h(il) = i1. Since
the cycles are disjunct, we can order them in any way we want, so let us just
order them by size, larger cycles first. If we now conjugate h with a g ∈ Sn we
have (ghg−1)(g(i)) = g(h(i)), that means

ghg−1 = (g(i1), . . . , g(il)) . . . (g(im), . . . , g(in))

in cycle notation. Since we conjugate h with every element of Sn to form the
conjugacy class, it contains every single permutation with the same cycle sizes,
that means with the same cycle type. Neither the exact arrangement of the
elements in the cycles nor the order of the cycles themselves matter, so we can
assign every conjugacy class one to one a partition λ = (λ1, . . . , λt) of n, where
λi ∈ N, λi ≥ λi+1 and

∑t
i=1 λi = n.

Why did we determine the conjugacy classes? The number of different ir-
reducible modules of a group is exactly the number of conjugacy classes. We
will not prove it here, since we will not need it for the decomposition later,
but it does explain why we start the construction of irreducible modules with a
partition λ.

For the actual construction we first need to define the Young tableaux of
shape λ. They are arrays filled with every integer from 1 to n exactly once,
which have l rows of λi entries each, aligned on the left. For example we have
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for λ = (3, 2, 1), n = 6 the tableau:

t =
1 3 5
2 4
6

We call two tableaux t1, t2 of the same shape row equivalent, written t1 ∼ t2, if
their corresponding rows contain the same elements. The equivalence classes of
Young tableaux are called Young tabloids, for example:

t =
1 3
2 4

, [t] =
{

1 3
2 4

,
1 3
4 2

,
3 1
2 4

,
3 1
4 2

}
=

1 3
2 4

Which we write as arrays with horizontal lines only.

We can define an action of Sn on the tableaux by applying the permutation
element wise on all their entries. We can extend this to tabloids as well by π[t] =
[π(t)], which is independent from the choice of t, since the order of elements in
each row does not matter after forming the equivalence class again afterwards.
This action gives us a first Sn-module (which is generally not irreducible):

Mλ := RT

where T = {[t1], . . . , [tk]} is the set of all λ-tabloids, so Mλ consists of vectors
indexed by the tabloids, and Sn acts on these by permuting the coordinates.

We now want to find an irreducible submodule in Mλ. If we have a tableau
t, with columns C1, . . . , Ck, then we call Ct := SC1 × . . . × SCk

⊆ Sn the
column-stabilizer of t. If we have a subset H of Sn, we can construct a vector in
R[Sn], the group ring of Sn over R. It can be seen as RSn with multiplication(∑

π∈Sn
aππ

) (∑
σ∈Sn

bσσ
)

=
∑
πσ=µ aπbσµ.

H− :=
∑
π∈H

sign(π)π ∈ R[Sn]

Since we have an operation of Sn on Mλ, we can extend this to an operation of
R[Sn] on Mλ by(∑

π∈Sn

aππ

) ∑
λ-tabloids [t]

b[t][t]

 =
∑
π∈Sn

λ-tabloids [t]

aπb[t][π(t)]

This allows us to define the polytabloid of a tableau t:

et := C−t [t] ∈Mλ

For example if we start with the tableau

t =
1 2 3
4 5
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we get the column stabilizer

Ct = S{1,4} × S{2,5} × S{3}
C−t = {id, (1, 4)}−{id, (2, 5)}−

= (id− (1, 4))(id− (2, 5))
= id− (1, 4)− (2, 5) + (1, 4)(2, 5)

Which means the polytabloid of t is the vector

et = C−t [t] =
1 2 3
4 5

−
4 2 3
1 5

−
1 5 3
4 2

+
4 5 3
1 2

We defined these polytabloids because they have the useful property to turn
into other polytabloids after applying a permutation π ∈ Sn to them:

Lemma 3.1.1.
πet = eπt

Proof. Let C1, . . . , Ck again be the columns of t. We have Cπt = πCtπ
−1, since

if σ ∈ Ct, then

σCi = Ci ⇔ σπ−1πCi = Ci ⇔ (πσπ−1)πCi = πCi

Because the sign of a permutation only depends on its cycle type, we get

C−πt =
∑
σ∈Ct

sign(σ)πσπ−1 = πC−t π
−1

Using this proves the lemma:

eπt = C−πt[πt] = πC−t π
−1[πt] = πC−t [t] = πet

So the polytabloids span a submodule of Mλ, the Specht module Sλ. Fur-
thermore it is cyclic, generated by any polytabloid, since we can always find a
permutation π for a tableau t′ of the same shape with πt = t′, implying Sλ is
the smallest submodule of Mλ which contains a polytabloid. We will now show
that these modules are irreducible.

Let 〈·, ·〉 be the standard inner product on Mλ, that is the unique inner
product with 〈[s], [t]〉 = δ[s],[t]. First we need some properties of this product
and the (·)− operation from earlier.

Lemma 3.1.2 (Sign Lemma). If H ⊆ Sn is a subgroup, then the following
properties apply:

(i) ∀π ∈ H : πH− = H−π = sign(π)H−

(ii) ∀u, v ∈Mλ : 〈H−u, v〉 = 〈u,H−v〉
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(iii) (b, c) ∈ H ⇒ ∃k ∈ R[Sn] : H− = k(id− (b, c))

(iv) If (b, c) ∈ H and (b, c)[t] = [t], then H−[t] = 0.

Proof. We use sign(π−1)sign(π) = sign(ππ−1) = 1 throughout this proof.

(i) Let π ∈ H. We then have by definition:

πH− =
∑
σ∈H

sign(σ)πσ =
∑

π−1σ∈H

sign(π−1σ)σ = sign(π)H−

The case H−π works analogously.

(ii) The inner product is Sn invariant, since 〈π[s], π[t]〉 = δπ[s],π[t] = δ[s],[t] =
〈[s], [t]〉, so we have:

〈H−u, v〉 =
∑
π∈H

sign(π)〈πu, v〉 =
∑
π∈H

sign(π)〈u, π−1v〉 = 〈u,H−v〉

(iii) We have a subgroup K = {id, (b, c)} ⊆ H. This subgroup can be used
to decompose H into disjoint K-orbits, of which we can choose a set of
representatives k1, . . . , kl, called a transversal:

H =
⋃̇
kiK

Which gives us the factor we want:

H− =
l∑
i=1

k−i K
− =

(
l∑
i=1

k−i

)
(id− (b, c))

Here we applied (·)− to a single element, meaning to the set of just that
element.

(iv) This property follows directly from (iii):

H−[t] = k(id− (b, c))[t] = k([t]− [t]) = 0

This lemma is enough to prove the submodule theorem, which gives us the
irreducibility of the Sλ:

Theorem 3.1.3 (Submodule theorem of James). If U ⊆ Mλ is a submodule,
then we have U ⊇ Sλ or U ⊆ Sλ⊥.

Proof. Let s and t be any two tableaux of the same shape λ with C−t [s] 6= 0.
If two elements b and c are in the same row of s (so (b, c)[s] = [s]), then they
cannot be in the same column of t, since that would imply (b, c) is an element
of the column stabilizer Ct of t. Thus would follow with (iv) of the sign lemma
that C−t [s] = 0.
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Since we do not have to "break" any columns of t to get s, we can always
find an element π ∈ Ct with [s] = π[t]. This allows us to calculate C−t [s] with
the first part of the lemma above:

C−t [s] = C−t π[t] = sign(π)C−t [t] = ±et

Together with the assumption at the beginning of the proof we have C−t [s] ∈
{0, et,−et} for any tableaux s and t.

We can now extend this to elements u ∈ U . Since we can write u =∑
i∈I ci[si] for tabloids [si] it follows for any tableau t:

C−t u =
∑
i∈I

ciC
−
t [si] =

(∑
i∈I

dici

)
et with di ∈ 0, 1,−1

Which means that C−t u = cet is a multiple of et.

We now need to consider two cases. First let us assume that there is an
u ∈ U and a tableau t with C−t u = cet 6= 0. Since U is a submodule the vector
cet, and with that et, has to be an element in U . We have seen earlier that
every polytabloid generates Sλ, thus Sλ ⊆ U .

If we always have C−t u = 0, then follows for any u ∈ U and tableau t by (ii)
of the lemma:

〈u, et〉 = 〈u,C−t [t]〉 = 〈C−t u, [t]〉 = 〈0, [t]〉 = 0

Which implies U ⊆ Sλ⊥ because the polytabloids span Sλ.

Since Sλ ∩ Sλ⊥ = ∅ over the field R, the Sλ cannot have a non trivial
submodule, so they are irreducible. For the decomposition we still need to
know if two submodules are equivalent:

Proposition 3.1.4. The Specht modules are pairwise inequivalent.

Proof. If there is an isometry Sλ → Sµ, then there is also a non trivial homo-
morphism θ : Sλ → Mµ ⊇ Sµ. The polytabloids form a basis of Sλ, so there
has to be at least one with θ(et) 6= 0. Decomposing Mλ = Sλ ⊕ Sλ⊥ allows us
to extend θ to an homomorphism Mλ →Mµ by setting θ(Sλ⊥) = 0. Hence we
have

0 6= θ(et) = θ(C−t [t]) = C−t θ([t]) = C−t

(∑
i

ci[si]
)

for µ-tabloids [si], implying that there has to be at least one µ-tabloid [s] with
C−t [s] 6= 0.

With the same argument as in the proof of 3.1.3 we can show that if two
elements b, c are in the same row of s, then they cannot be in the same column
of t. In consequence we can permute within columns of t to shift every element
of the first row of s into the first row of t, meaning λ1 ≥ µ1. Since this does
not change that rows of s and columns of t have at most one common element,
we can repeat it for the second row of s, shifting them as much up as possible.
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Doing this we will need at most two rows of t, so λ1 + λ2 ≥ µ1 + µ2. Repeating
it for the remaining rows of s in the same way gives us:

∀i : λ1 + . . . λi ≥ µ1 + . . .+ µi

This property is called the dominance lemma for partitions. We can do the
same with the isometry in the other direction Sµ → Sλ, resulting in

∀i : λ1 + . . . λi = µ1 + . . .+ µi

which implies λ = µ.

If we want to determine the isomorphism explicitly later, we are going to
need the dimensions of the Specht modules. This is a lot of work for the general
case, but it will be quick for the specific modules we encounter later, so we can
leave it out here.

3.2 The decomposition in four dimensions

We now want to block diagonalize the Terwilliger algebra, which we do by
first decomposing R{0,1}n into irreducible Γ-modules. The general method next
section is more technical, since we will derive some properties needed to find
the Ek,i,j basis at the same time, as well as start by defining a special operator
between different parts of the algebra. To see where this comes from, and show
this a bit more visually, it makes sense to take a look at a specific smaller
example first.

Figure 3.2.1: {0, 1}4 coloured by Hamming weights. Vertices are connected if
the Hamming distance between them is 1.

0000

1111

Let us take a look at the four dimensional Terwilliger algebra B. We de-
fined this to be the set of matrices in R{0,1}4×{0,1}4 which are invariant under
coordinate permutations, that is elements of Γ = S4. The first thing we no-
tice here, is that permuting coordinates of a binary word does not change its
Hamming weight. Hence we get an easy first decomposition of R{0,1}4 into 5
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submodules, one for each weight from 0 to 4. We define these subsets of coor-
dinates as Ωm := {x ∈ {0, 1}4 | |x| = m} and the corresponding submodules
M4−m,m := RΩm .

R{0,1}
4

= M4,0 ⊥M3,1 ⊥M2,2 ⊥M1,3 ⊥M0,4

Note hereMn−m,m andMm,n−m are equivalent since inverting all bits of a word
is an isometry between these modules, therefore it is enough to take a closer
look at the first three modules here.

For the next step of the decomposition we want to interpret the binary
coordinates in {0, 1}4 as their supports, that is subsets of {1, 2, 3, 4}:

Figure 3.2.2: The first decomposition of R{0,1}4 embedded in R3, such that Sn
acts with the same elements of O(3) on each module. Vertices are connected if
the Hamming distance between them is 2.

∅

1
2

34

12

23

34

14 13

24
1234

234
134

124 123

M4,0 M3,1 M2,2 M1,3 M0,4

Because the sets are unordered, we can interpret them as one row of a
tabloid. The idea is now to uniquely complete them to full tabloids by adding
a second row above with the remaining elements, which is longer since the sets
we consider have at most bn2 c elements.

This should look familiar: Our modules are indexed by all tabloids of a
certain shape, and S4 operates on them by permuting their elements. They
are exactly the (reducible) modules Mλ for the shape λ = (n −m,m), which
we worked with last section. We already know of the irreducible submodule
Sλ ⊆Mλ, but nearly nothing about the complement Sλ⊥ of them.

Let us take a look at S(2,2) specifically: It is the subspace spanned by the
polytabloids of tableaux of shape (2, 2). We will see later it is spanned by
the polytabloids of standard tableaux, which are the tableaux with increasing
elements in both rows and columns. Here these are:

t1 =
1 2
3 4

et1 =
1 2
3 4

−
2 3
1 4

−
1 4
2 3

+
3 4
1 2

t2 =
1 3
2 4

et2 =
1 3
2 4

−
2 3
1 4

−
1 4
2 3

+
2 4
1 3
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Since we only need to consider tableaux with two rows, we can notice a
pattern here: If the bottom rows of two tabloids differ by only one element,
then their signs are opposite. This is caused by the column size being two
of the columns with a bottom row, so {id, (i, j)} can be factored out of the
column stabilizer, where {i, j} is any column. This implies for any vector in
Sλ, that the sum of the entries indexed by all tabloids with m − 1 common
entries in the bottom row is zero. For example if we have v ∈ S(2,2), then
(dv)1 := v12 + v13 + v14 = 0. Taking a look at figure 3.2.2 above, we notice
it is exactly a face of the octahedron. If we now apply a permutation to this
face, we get another face of the octahedron, and the new face has again m− 1
common elements. In our example we get four faces of this type, giving us a
second description of S(2,2), since dim(S(2,2)) = 2 = 6− 4:

v ∈ S(2,2) ⇔ dv =


v12 + v13 + v14
v12 + v23 + v24
v13 + v23 + v34
v14 + v24 + v34

 = 0

Meaning S(2,2) is the kernel of d, which we will prove more formally later.
But what does d do to elements in S(2,2)⊥? It is easy to check that d preserves
the action of S4, if we see it as a function from M2,2 to M3,1. Since the image
of S(2,2)⊥ has dimension 4, it even is an isometry between S(2,2)⊥ and M3,1:

M2,2 ∼= S(2,2) ⊥ S(2,2)⊥ ∼= S(2,2) ⊥M3,1

This can be repeated recursively, fully decomposing R{0,1}4 :

R{0,1}
4

= M4,0 ⊥M3,1 ⊥M2,2 ⊥M1,3 ⊥M0,4

= S(4,0)

⊥ S(4,0) ⊥ S(3,1)

⊥ S(4,0) ⊥ S(3,1) ⊥ S(2,2)

⊥ S(4,0) ⊥ S(3,1)

⊥ S(4,0)

As shown earlier, the Specht modules are all different, which means this
already gives us the amount and sizes of blocks of the block diagonalization of
the Terwilliger algebra (for n = 4) already:

B ∼= R5×5 ⊕ R3×3 ⊕ R

Which reduces the amount of entries from 162 = 256 to 52+32+1 = 35. Since the
first decomposition ordered the elements by weight, we get the decompositions
of the subspaces R{0,1}

4
≥D by removing the rows and columns belonging to the

lower weights.

For the next step we would now have to find orthonormal bases and isome-
tries of these submodules explicitly, which will be done next chapter for the
general case.
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3.3 Distance regular graphs

In this section a more general approach to find the decomposition is explained,
because in most cases one cannot "guess" the decomposition as easily as in
the example above. Both this general section and the application of it to our
problem next section are done similarly to [4], chapters 5 and 6.

In this section and the following ones we will interpret elements x ∈ {0, 1}n
as subsets A ⊆ {1, . . . , n}, as we have done last section to find the tabloids.
We defined Ωm as {x ∈ {0, 1}n | |x| = m}, which means from now on it will
instead be seen as

Ωm := {A ⊆ {1, . . . , n} | |A| = m}

We now want to determine the general decomposition of Mn−m,m into irre-
ducible submodules and calculate the Ek,i,j basis in the process. But first we
need a few more general results. The decision to draw graphs in figure (3.2.2)
was not random, since S4 acts on all of them as graph automorphisms. We will
see that all of these graphs are distance regular, but let us define the general
graph first:

Gn−m,m :=
(
Ωm, δ−1(1)

)
where δ is the Johnson distance

δ : Ωm × Ωm → N, (A,B) 7→ m− |A ∩B| = |A \B| = |B \A|

Which coincides with 1
2d, half of the Hamming distance, if we go back to the

binary interpretation (But only within the same Ωm). So this distance gives us
exactly the length of shortest paths between nodes of the graphs.

Now let us define what a distance regular graph is:

Definition 3.3.1. A graph G = (V,E) is called distance regular, if there exist
constants b0, . . . , bN and c0, . . . , cN , where

N = diam(G) := max
x,y∈V

δ(x, y)

such that if x and y have distance i, then exactly bi neighbours of x have distance
i+ 1 from y, and exactly ci neighbours of x have distance i− 1 from y.

Proposition 3.3.2. Gn−m,m is distance regular with diameter min{n−m,m}
and

bi = (n−m− i)(m− i)
ci = i2

Proof. Two disjunct sets in Ωm can be found if and only if n ≥ 2m, in that case
we have diam(Gn−m,m) = m. Otherwise they have at leastm−(n−m) = 2m−n
elements in common, so m−minA,B∈Ωm

|A∩B| = m− (2m−n) = n−m. Since
in this case n−m ≤ m we have

diam(Gn−m,m) = min{m,n−m}
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Suppose now that δ(A,B) = i. The neighbours of B are exactly the elements
given by (B \ {b}) ∪ {a}, where b ∈ B and a 6= B. If we want to increase the
distance to A we need to choose b ∈ A and a 6= A at the same time. Since
|A ∩ B| = m− i and |A ∪B| = n−m− i we have (n−m− i)(m− i) ways to
choose a and b.

If we want to lower the distance to A instead, we select b 6= A and a ∈ A.
As |B \A| = δ(A,B) = i and |A \B| = δ(A,B) = i we get ci = i2.

What can we use this property for? For any graph G = (V,E) we can define
a family of linear operators on RV for j = 0, 1, . . .:

∆j : RV → RV , (∆jv)(x) :=
∑
y∈V

δ(x,y)=j

v(y)

With ∆j = 0 for J > N . If we now have an eigenvector w of ∆j for the
eigenvalue λ and a graph automorphism π of G, then

(∆Nπ(w))(x) =
∑
y∈V

δ(x,y)=N

w(π−1(y)) =
∑
y∈V

δ(π−1(x),y)=N

w(y)

= (π(∆Nw))(x) = λ(π(w))(x)

So π(w) is in the same eigenspace of ∆N as w. This means that the eigenspaces
of all the ∆N are closed under action of Aut(G), implying they are Aut(G)-
modules! If the graph additionally is distance regular, then we can even show it
is enough to only consider the eigenspaces of the adjacency operator ∆ := ∆1:

Proposition 3.3.3. For j = 0, . . . , N :

(i) ∆j∆1 = bj−1∆j−i + (b0 − bj − cj)∆j + cj+1∆j+1

(ii) There exists a real polynomial pj of degree j such that ∆j = pj(∆1).

(iii) p(∆1) is a linear combination of ∆0, . . . ,∆N for all polynomials p, and
the ∆0, . . . ,∆N are linearly independent.

Proof. Let v ∈ RV and x ∈ V :

(∆j∆1v)(x) =
∑
z∈V

δ(z,x)=j

∑
y∈V

δ(y,z)=1

v(y)

=
∑
z∈V

δ(z,x)=j


∑
y∈V

δ(y,z)=1
δ(y,x)=j−1

v(y) +
∑
y∈V

δ(y,z)=1
δ(y,x)=j

v(y) +
∑
y∈V

δ(y,z)=1
δ(y,x)=j+1

v(y)


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By switching the two sums we can calculate the first sum:∑
z∈V

δ(z,x)=j

∑
y∈V

δ(y,z)=1
δ(y,x)=j−1

v(y) =
∑
y∈V

δ(y,x)=j−1

∑
z∈V

δ(z,x)=j
δ(z,y)=1

v(y) = bj−1(∆j−1v)(y)

And analogously cj+1(∆j+1v)(y) for the third sum. The second is a bit different:

∑
y∈V

δ(y,x)=j

∑
z∈V

δ(z,x)=j
δ(z,y)=1

v(y) =
∑
y∈V

δ(y,x)=j


∑
z∈V

δ(z,y)=1

1−
∑
z∈V

δ(z,x)=j+1
δ(z,y)=1

1−
∑
z∈V

δ(z,x)=j−1
δ(z,y)=1

1

 v(y)

= (b0 − bj − cj)(∆jv)(x)

To prove (ii) we first use (i) to get the formula

∆2
1 = b0∆0 + (b0 − b1 − c1)∆1 + c2∆2

Note here that c2, . . . , cN > 0 by definition of N . Because of ∆0 = id this
formula gives us p2:

∆2 = 1
c2

∆2
1 −

b0 − b1 − c1
c2

∆1 −
b0
c2

id

The general case follows inductively by using (i) in each step.

The first part of (iii) is shown by repeatedly applying (i) to reduce the
degree of p by adding terms in other ∆j . We have seen it for ∆2

1, and for higher
degrees we simply split ∆k

1 = ∆1∆k−1
1 , apply the case k − 1 and use (i) on all

resulting terms.

If δy is the characteristic vector of y ∈ V , then N∑
j=0

αj∆jδy

 (x) = αδ(x,y)

So all αj have to be zero for the linear combination to be zero as well, and the
∆j are linearly independent.

This proposition implies that the eigenspaces of all the ∆j are eigenspaces
of ∆ = ∆1 too. Furthermore ∆ is selfadjoint:

〈∆v, w〉 =
∑
x∈V

∑
y∈V

δ(x,y)=1

v(y)w(x) =
∑
y∈V

∑
x∈V

δ(x,y)=1

v(y)w(x) = 〈v,∆w〉

So the different eigenspaces are orthogonal to each other:

λv〈v, w〉 = 〈∆v, w〉 = 〈v,∆w〉 = λw〈v, w〉

We can even say how many eigenspaces ∆ has exactly, leading to:
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Theorem 3.3.4. There is an orthogonal decomposition

RV =
N⊕
j=0

Vi

into distinct eigenspaces Vi of ∆, which are closed under actions of Aut(G).

Proof. We only have to show that the amount of distinct eigenspaces is N + 1.

The Bose-Mesner algebra AG of the graph is the span of ∆0, . . . ,∆N , which
by last proposition is exactly

AG = {p(∆) | p polynomial}

Since the ∆j are independent they form a basis of AG, and the dimension of
the algebra is N + 1.

Let λ0 > . . . > λM now be the distinct eigenvalues of ∆ corresponding to
the Vj . Because of ∆j = pj(∆) we know that that the Vi are eigenspaces of ∆j

for the eigenvalue pj(λi), giving us a decomposition

∆j =
M∑
i=0

pj(λi)Ei

where Ei is the orthogonal projection onto Vi. These projections are orthogonal
(as the Vi are orthogonal), and are elements of AG:

Ei =
∏
j 6=i

∆− λj id
λi − λj

= p′i(∆)

Because Ei is linear and for v ∈ Vk:

p′i(∆)(v) =

∏
j 6=i

λk − λj
λi − λj

 v =
{
v if k = i

0 else

So the Ei form a second basis of AG, of which the dimension is N + 1, proving
M = N .

3.4 The decomposition of Mn−m,m

We now have everything we need for the decomposition of Mn−m,m (and with
that of the whole module), which we start by defining the operator d, as seen
in the example, formally as

d : Mn−m,m →Mn−m+1,m−1,

(dv)A =
∑

A⊂B∈Ωm

vB for v ∈Mn−m,m, A ∈ Ωm−1
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Since this operator is linear, we can define its adjoint operator

d∗ : Mn−m+1,m−1 →Mn−m,m,

(d∗w)B =
∑

B⊃A∈Ωm−1

wA for w ∈Mn−m+1,m−1, B ∈ Ωm

which we can check by

〈dv, w〉 =
∑

A∈Ωm−1

(dv)AwA =
∑

Ωm−13A⊂B∈Ωm

vBwA

=
∑
B∈Ωm

vB(d∗w)B = 〈v, d∗w〉

To prove properties of these operators it is helpful to take a look at Dirac
functions δB ∈Mn−m,m, that is a unit vector with a one at coordinate B. These
form a basis of Mn−m,m, and it is easy to see how d and d∗ act on them:

(dδB)A =
∑

A⊂C∈Ωm

(δB)C =
{

1 if A ⊂ B
0 otherwise

Which means that

dδB =
∑
j∈B

δB\{j}

Similarly we have

d∗δA =
∑
i/∈A

δA∪{i}

We now technically have n different d and d∗ operators, for each m =
0, . . . , n − 1. To make things easier from now on we combine them to linear
operators on the whole space from before the first decomposition:

d :
n⊕

m=0
Mn−m,m →

n⊕
m=0

Mn−m,m

defined for v =
∑n
m=1 v

m, vm ∈Mn−m,m by

dv =
n∑

m=1
dvm

Notice here that dv0 = 0. In the same way we can generalize d∗ to

d∗ :
n⊕

m=0
Mn−m,m →

n⊕
m=0

Mn−m,m, d∗v =
n−1∑
m=0

d∗vm

This time we have d∗vn = 0.
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Last section we have seen the importance of the adjacency operator ∆. For
our graph applying it to an v ∈Mn−m,m gives us

(∆v)A =
∑

B∈Ωm,δ(A,B)=1

vB

Hence its image of a Dirac function is

∆δB =
∑

A∈Ωm,δ(A,B)=1

δA

The Operators d, d∗ and ∆ are closely connected, as can be seen in the following
lemma:

Lemma 3.4.1. For v ∈Mn−m,m we have:

(i) dd∗v = ∆v + (n−m)v

(ii) d∗dv = ∆v +mv

Proof. Since the Dirac functions form a basis of Mn−m,m and all operators are
linear, it is enough to check the lemma for these. Let A be an element of Ωm:

dd∗δA = d
∑
j /∈A

δA∪{j} =
∑

j /∈A,i∈A∪{j}

δ(A∪{j})\{i}

=
∑
j /∈A

δA +
∑

j /∈A,i∈A

δ(A∪{j})\{i} = (n−m)δA + ∆v

Since δ(A,B) = 1⇔ B = (A ∪ {j}) \ {i} for j /∈ A, i ∈ A. Similarly we have

d∗dδA = d∗
∑
j∈A

δA\{j} =
∑
j∈A

δA +
∑

j∈A,i/∈A

δ(A\{j})∪{i} = mδA + ∆v

Starting with the next lemma the Pochhammer symbol will appear in most
formulas. It is defined for a ∈ R, i ∈ N as

(a)i :=
i−1∏
l=0

(a+ l) = a(a+ 1) . . . (a+ i− 1)

It is straightforward to check a few helpful properties:

• a(a+ 1)i−1 = (a)i

• (1)n = n!

•
(
n
k

)
= (n−k+1)k

k! = (−1)k(−n)k

k!

We can now take a look at what multiple applications of d and d∗ do to a
vector:
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Lemma 3.4.2. For v ∈Mn−m,m and 1 ≤ p ≤ q ≤ n−m we have:

(i) d(d∗)qv = (d∗)qdv + q(n− 2m− q + 1)(d∗)q−1v

(ii) dv = 0 ⇒ dp(d∗)qv = (q − p+ 1)p(n− 2m− q + 1)p(d∗)q−pv

Proof. From last lemma it follows that

dd∗v − d∗dv = (n− 2m)v

which is the case q = 1 of the first formula. The general case follows inductively:

d(d∗)qv = dd∗
(
(d∗)q−1v

)
Here we apply the case q = 1 with (d∗)q−1v ∈Mn−m−(q−1),m−(q−1):

= d∗d(d∗)q−1v + (n− 2(m− q + 1))(d∗)q−1v

And the case q − 1:

= d∗
(
(d∗)q−1dv + (q − 1)(n− 2m− (q − 1) + 1)(d∗)q−2v

)
+ (n− 2m+ 2q − 2)(d∗)q−1v

= (d∗)qdv + q(n− 2m− q + 1)(d∗)q−1v

The second formula is shown similarly. If p = 1 then it matches the first for-
mula since dv = 0, and the general case is again proven inductively by applying
first the case p = 1 and then p− 1:

dp(d∗)qv = dp−1q(n− 2m− q + 1)(d∗)q−1v

= q(n− 2m− q + 1)(q − p+ 1)p−1(n− 2m− (q − 1) + 1)p−1(d∗)q−pv
= (q − p+ 1)p(n− 2m− q + 1)p(d∗)q−pv

We now a get a second description of (some) Specht modules:

Definition 3.4.3.
Ŝn−m,m := Mn−m,m ∩Ker(d)

For now we will not assume that they are the same modules as defined before,
since we do not need any of their properties here. We will prove that they are
in fact the same after next theorem.

We can now decomposeMn−m,m into the ∆-eigenspaces from theorem 3.3.4:

Theorem 3.4.4. We have:

(i) For 0 < m ≤ n
2 :

dim Ŝn−m,m =
(
n

m

)
−
(

n

m− 1

)
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(ii) For 0 ≤ m ≤ n, 0 ≤ k ≤ min{n−m,m}, v ∈ Ŝn−k,k:

‖(d∗)m−kv‖2 = (m− k)!(n− k −m+ 1)m−k‖v‖2

which implies that (d∗)m−k is injective from Ŝn−k,k to Mn−m,m.

(iii) For 0 ≤ m ≤ n:

Mn−m,m =
min{m,n−m}⊕

k=0
(d∗)m−kŜn−k,k

is the decomposition of Mn−m,m into distinct ∆-eigenspaces.

(iv) The eigenvalue corresponding to (d∗)m−kŜn−k,k is

m(n−m)− k(n− k + 1)

Proof. The length change in (ii) is a direct consequence of lemma 3.4.2 (ii), in
fact we even get more general case for v ∈ Ŝn−h,h, w ∈ Mn−k,k with 0 < h ≤
k ≤ m ≤ n:

〈(d∗)m−hv, (d∗)m−kw〉 = 〈dm−k(d∗)m−hv, w〉
= (k − h+ 1)m−k(n− h−m+ 1)m−k〈(d∗)k−hv, w〉

If we set h = k and v = w then we get

‖(d∗)m−kv‖2 = (1)m−k(n− k −m+ 1)m−k‖v‖2

= (m− k)!(n− k −m+ 1)m−k‖v‖2

To prove (iv) we take an element in Ŝn−k,k = Mn−k,k ∩ Ker(d) and apply
first lemma 3.4.1 (i) and then lemma 3.4.2 (i):

∆(d∗)m−kv = dd∗(d∗)m−kv − (n−m)(d∗)m−kv
= (m− k + 1)(n− k −m)(d∗)m−kv − (n−m)(d∗)m−kv
= (m(n−m)− k(n− k + 1)) (d∗)m−kv

It is enough to show (iii) for 0 ≤ m ≤ n
2 , since the complement (respectively

bit wise inversion) is an isometry from Mn−m,m to Mm,n−m. Since we have
already shown that they are (distinct) eigenspaces in (iv), and their number
is diam (Gn−m,m) + 1 = min{n − m,m} + 1, we only need to show that this
decomposition includes all of Mn−m,m because of theorem 3.3.4. We do not
know the dimension of the Specht modules yet, so we do this inductively like in
the example earlier. First of all, we can decompose

Mn−1,1 = R{{0},...,{n}} = Sn−1,1 ⊕ d∗Sn,0

Since the elements v ∈ Ŝn−1,1 = Ker(d) ∩ R{{0},...,{n}} are the elements with
mean zero, because d(v) =

∑
i vi = 0, and d∗Ŝn,0 = d∗R{∅} are the constant

elements. Furthermore we have

Mn−m,m = Ŝn−m,m ⊕ d∗Mn−m+1,m−1
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in the general case. To show this let v ∈ Ŝn−m,m and w ∈Mn−m+1,m−1, then

0 = 〈0, w〉 = 〈dv, w〉 = 〈v, d∗w〉

so Ŝn−m,m ⊆
(
d∗Mn−m+1,m−1)⊥. The other direction follows because

0 = 〈v, d∗w〉 = 〈dv, w〉 = 0

for all w implies dv = 0.

Note that d∗ preserves orthogonality after the more general formula of (ii)
above:

〈(d∗)m−hv, (d∗)m−kw〉 = c〈(d∗)k−hv, w〉 with c 6= 0

for v ∈ Ŝn−h,h, w ∈Mn−k,k and h ≤ k, so can now use it inductively to get the
orthogonal decomposition (iii):

Mn−m,m =
min{m,n−m}⊕

k=0
(d∗)m−kŜn−k,k

This decomposition gives us the dimension formula (i) since

dim Ŝn−m,m = dim Mn−m,m − dim d∗Mn−m+1,m−1

= dim Mn−m,m − dim Mn−m+1,m−1

=
(
n

m

)
−
(

n

m− 1

)
where we used that d∗ is injective for 0 ≤ m ≤ n

2 , which follows from (ii).

We can now prove the equivalence of the two Specht module definitions:

Lemma 3.4.5.
Ŝn−m,m = Sn−m,m

Proof. Let t be a (n − m,m)-tableau, with m ≤ n
2 since Sn−m,m ∼= Sm,n−m,

and k = n−m:

t =
a1 a2 . . . am . . . ak

b1 b2 . . . bm

The column stabilizer of this tableau is

Ct = S{a1,b1} × S{a2,b2} × . . .× S{am,bm}

so C−t factorizes as

C−t =
m∏
i=1

(id− (ai, bi))

Let B now be an element of Ωm−1. We showed that

(dv)B =
∑
j /∈B

vB∪{j}
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Since the tableau contains every number from 1 to n once, applying d to a
polytabloid et = C−t [t] at coordinate B results either a sum of zeroes if B is
never contained in the bottom row of the tabloids appearing in et, or there are
exactly two permutations with B in the bottom row:

(det)B =
∑

σ∈πS{ai,bi}

sign(σ) = sign(π) + sign(π(ai, bi)) = 0

where π is the unique permutation in
∏m
j=1,j 6=i S{aj ,bj} such that B is contained

in the bottom row of π[t]. This means that all polytabloids, which span Sn−m,m,
are elements of Ŝn−m,m.

We now want to show that dim Sn−m,m ≥ dim Ŝn−m,m =
(
n
m

)
−
(

n
m−1

)
,

from which follows the lemma. For this we define standard tableaux as those
tableaux of which the entries increase from left to right and from top to bottom
in all rows and columns. Applying a permutation of the column stabilizer to a
standard tableau t is never another standard tableau, since at least one column
is not ordered right afterwards. In tabloids the order of the row elements does
not matter, but even then it is not possible to get the tabloid of a different
standard tableau t′ by only permuting within columns, because then at least
two columns would have to be in the wrong order in t, or t = t′.

So the value at coordinate [t] of a polytabloid of a standard tableau t is not
zero only in the case that the polytabloid is et, and by this the polytabloids
of standard tableaux are linearly independent. We can show that there are(
n
m

)
−
(

n
m−1

)
standard tablaux inductively over m and n:

If m = 0 then the tableau has only one row, which is sorted, so there is only
1 = 1− 0 =

(
n
0
)
−
(
n
−1
)
standard tableaux of shape (n, 0). Assume now that the

formula is correct for the shapes ((n−1)−m,m) and ((n−1)− (m−1),m−1).
Since the new highest entry n can only be at the end of either the first or
the second row, removing it gives us a standard tableau of one of the above
mentioned shapes. Hence the amount of standard tableaux of shape (n,m) is
the sum of the amount of standard tableaux of those two shapes:((

n− 1
m

)
−
(
n− 1
m− 1

))
+
((

n− 1
m− 1

)
−
(
n− 1
m− 2

))
=
(
n

m

)
−
(

n

m− 1

)

So Sn−m,m = Ŝn−m,m, and we even found a basis of these modules.

Theorem 3.4.6. The decomposition of Mn−m,m into irreducible Sn-modules
is:

Mn−m,m ∼=
min{m,n−m}⊕

k=0
Sn−k,k

Proof. Again it is only needed to prove the theorem for m ≤ n
2 because of

symmetry. We just need to show that there is an isometry between Sn−k,k

and its image, since we have already proven a similar decomposition in theorem
3.4.4. In part (ii) of the same theorem we have shown that the operator (d∗)m−k
is injective, and by that a (linear) isomorphism to its image.
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We still have to show that (d∗)m−k preserves the action of Sn and the inner
products. For this let π be an element of Sn and B ∈ Ωm:

d∗π(δB) = d∗δπ(B) =
∑

j /∈π(B)

δπ(B)∪{j} =
∑
j /∈B

δπ(B∪{j}) = π(d∗δB)

Since the δB form a basis of Mn−m,m the whole operator preserves the per-
mutations, and using this repeatedly gives us the same for (d∗)m−k. The
inner products on Sn−k,k are (nearly) compatible with (d∗)m−k because for
v, w ∈ Sn−k,k ⊆Mn−k,m we either have m = k, or

〈(d∗)m−kv, (d∗)m−kw〉 = 〈dm−k(d∗)m−kv, w〉
= 〈(n− 2k − (m− k) + 1)m−kv, w〉

by lemma 3.4.2. That means by scaling we get an isometry between Sn−k,k and
(d∗)m−kSn−k,k:

((n− k −m+ 1)m−k)−
1
2 (d∗)m−k =

√
(n− k −m)!

(n− 2k)! (d∗)m−k

The factor is positive, since k < m ≤ n
2 .

This does not give us the block decomposition of our program yet, but we do
know how large the programs will be afterwards: The Terwilliger algebra block
diagonalizes to bn2 c+ 1 blocks of sizes

n+ 1, n− 1, n− 3, . . . ,
{

1 if n is even
2 if n is odd

Even with the empty space outside of blocks the program now only uses matrices
of dimensionO(n2), where we had matrices of dimensionO(2n) before! For cases
with D > 0 the matrix sizes reduce further, since we remove rows and columns
corresponding to the Mn−m,m with m < D. We can now fix Hk,i

∼= Sn−k,k and
hk = dim(Hk,i) =

(
n
k

)
−
(

n
m−1

)
for the rest of the thesis.



Chapter 4

Determining the
isomorphism

In this chapter we are going to determine the isomorphism for the block diago-
nalization explicitly. We again follow Vallentin’s paper [14], while the calculation
of the needed invariant functions is a mix of [4], chapter 6, and the two papers
[5], [6] of Dunkl. As seen in section 2.2, the calculation of the isomorphism
comes down to calculating the matrices Ek,i,j explicitly:

4.1 An approach to find Ek,i,j

We now want to find an approach to determine the basis Ek,i,j of the Terwilliger
algebra B, which we defined using orthonormal bases of all modules of the
decomposition. As can be seen in the example decomposition in dimension 4,
the basis of polytabloids of standard tableaux is not orthogonal.

Instead we use a different approach, with which we can avoid determining
the orthonormal bases explicitly: We construct special functions for each basis
element by:

zk,i,j : Sn → R, π 7→ Ek,i,j(π(1i0n−i), 1j0n−j)

Since the algebra B is Sn invariant, this function is left-invariant for elements σ
in H = Sj ×Sn−j , where Sj acts on the first j and Sn−j on the remaining n− j
coordinates:

zk,i,j(σπ) = Ek,i,j
(
σ(π(1i0n−i)), 1j0n−j

)
= Ek,i,j

(
σ−1(σ(π(1i0n−i))), σ−1(1j0n−j)

)
= Ek,i,j

(
π(1i0n−i), 1j0n−j

)
= zk,i,j(π)

33
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And it is Si × Sn−i = K-right-invariant:

zk,i,j(πσ) = Ek,i,j
(
π(σ(1i0n−i)), 1j0n−j

)
= Ek,i,j

(
π(1i0n−i), 1j0n−j

)
= zk,i,j(π)

Furthermore it lies in the subspace spanned by the matrix entries of an
irreducible representation corresponding to Sn−k,k ∼= Hk,i. To show this let
ek,i,1, . . . , ek,i,hk

be an orthonormal basis of this module, which allows us to
construct an orthogonal, irreducible representation Tk,i : Sn → O(Rhk ) of it by:

π(ek,i,l) =
hk∑
l′=1

[Tk,i(π)]l′,l ek,i,l′

Since we have Tk,i(σπ) = Tk,i(σ)Tk,i(π):

σ(π(ek,i,l)) =
hk∑
l′=1

[Tk,i(π)]l′,l σ(ek,i,l′)

=
hk∑
l′=1

[Tk,i(π)]l′,l
hk∑
l′′=1

[Tk,i(σ)]l′′,l′ ek,i,l′′

=
hk∑
l′′=1

[Tk,i(σ)Tk,i(π)]l′′,l ek,i,l′′

This representation is irreducible because the Hk,i are. We define Vk ⊆ R[Sn] as
the span of the functions π 7→ [Tk,i(π)]r,s for 1 ≤ r, s ≤ hk, which is independent
of the choice of i, as there is an isometry between Hk,i and Hk,i′ for all i′.

The functions zk,i,j , which give us the entries of the Ek,i,j basis, lie in Vk:

zk,i,j(π) = Ek,i,j(π(1i0n−i), 1j0n−j)

= 1
|V |

hk∑
l=1

ek,i,l(π(1i0n−i))ek,j,l(1j0n−j)

= 1
|V |

hk∑
l=1

(π(ek,i,l)) (1i0n−i)ek,j,l(1j0n−j)

= 1
|V |

hk∑
l=1

hk∑
l′=1

[Tk,i(π)]l′,l ek,i,l′(1
i0n−i)ek,j,l(1j0n−j)

We call functions in Vk which are H-left-invariant and K-right-invariant H-
K-invariant functions or intertwining functions. We will see that these functions
form a one dimensional subspace of Vk.

Let us now fix an element b := 1j0n−j ∈ Ωj , called the base point. Notice
here that the stabilizer of b is H = Sj × Sn−j , so there is an isomorphism

Sn�H → Snb = Ωj , π 7→ π(b)
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Since the H-(left)-invariant elements of R[Sn] ⊇ Vk can be seen as elements of
R
[
Sn�H

]
, we can now search for K-invariant elements in RΩj = Mn−j,j , which

turn K-right-invariant after applying the isomorphism.

If the vector v additionally lies in the submodule of Mn−j,j equivalent to
Sn−k,k, then we can use the base point to construct a vector in Vk:

z(π) :=v(π(b))

=
hk∑
l=1

clek,i′,l(π(b))

=
hk∑
l=1

cl

hk∑
l′=1

[Tk,i′(π)]l′,l ek,i′,l′(b)

=
hk∑

l,l′=1
[Tk,i′(π)]l′,l clek,i′,l′(b) ∈ Vk

since Vk is independent of i′.

Therefore we now want to search for Si × Sn−i-invariant elements in the
submodule of Mn−j,j equivalent to Sn−k,k.

4.2 Invariant functions

We start by determining the Ki := Si×Sn−i-invariant vectors inMn−k,k. To do
this we first define a multiplication on the Dirac functions for A,B ⊆ {1, . . . , n}:

δAδB := δA∪B

This gives us a convenient way to use certain symmetric polynomials to construct
invariant vectors:

i∏
t=1

(δ{t}α+ 1)
n∏

t=i+1
(δ{t}β + 1)

This polynomial is invariant for permutations in Ki, since Si acts on the first
product, and Sn−i on the second. As a result the coefficients of monomials of
degree k are Ki-invariant elements of Mn−k,k:

F ikl := coefficient of αlβk−l in above polynomial

For example for n = 4, i = 3 we get the vectors:

F 3
00 = δ∅

F 3
10 = δ{4}, F 3

11 = δ{1} + δ{2} + δ{3}

F 3
21 = δ{14} + δ{24} + δ{34}, F 3

22 = δ{12} + δ{23} + δ{13}

F 3
32 = δ{124} + δ{234} + δ{134}, F 3

3,3 = δ{123}

F 3
43 = δ{1234}
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For other parameters F 4
kl is zero. In general they are not trivial if max{0, k+

i − n} ≤ l ≤ min{k, i}, and they are all orthogonal to each other since every
Dirac function appears in exactly one of them for fixed n and i. In fact, they
span the subspace of RP({1,...,n}) of Ki-invariant vectors:

LKi
:= span{F ikl | k = 0, . . . , n,max{0, k + i− n} ≤ l ≤ min{k, i}}

as Ki has the same number of orbits as there are non zero F ikl, which is easy
to check: Because Ki is Si × Sn−i the orbit of a coordinate A depends only on
the number of elements of {1, . . . , i} and of {i+ 1, . . . , n} in A, which means we
can assign each orbit a pair (k, k − l) with the same range as for the F ikl.

We now want to cut LKi
with ker(d) to get vectors in the Specht modules.

For that, let us first check what applying d to an F ikl does:
Lemma 4.2.1.

dF ikl = (i− l + 1)F ik−1,l−1 + (n− i− k + l + 1)F ik−1,l

Proof. We can split the F ikl into a product corresponding to the two large prod-
ucts of the polynomial:

F ikl = σl({1, . . . , i})σk−l({i+ 1, . . . , n})

where we define
σl(A) :=

∑
B⊆A,|B|=l

δB

Applying d to these parts on their own results in:

dσl(A) =
∑

B⊆A,|B|=l

dδB

=
∑

B⊆A,|B|=l

∑
j∈B

δB\{j}

=
∑

B⊆A,|B|=l−1

∑
j∈A\B

δB

= (|A| − l + 1)σl−1(A)

Furthermore we can show a product formula for d (it can be seen as a differential
operator, if we interpret coordinates as monomials):

d(δAδB) = dδA∪B =
∑

j∈A∪B
δ(A∪B)\{j}

=
∑
j∈A

δA\{j}δB +
∑
j∈B

δAδB\{j} = dδAδB + δAdδB

From which follows the general formula d(vw) = dvw + vdw since d is linear.
Together we get

dF ikl = d (σl({1, . . . , i})σk−l({i+ 1, . . . , n}))
= (i− l + 1)σl−1({1, . . . , i})σk−l({i+ 1, . . . , n})

+ σl({1, . . . , i})(n− i− k + l + 1)σk−l−1({i+ 1, . . . , n})
= (i− l + 1)F ik−1,l−1 + (n− i+ k + l + 1)F ik−1,l
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We can now calculate theKi-invariant elements in Sn−k,k = Mn−k,k∩ker(d),
which are also called spherical functions:

Theorem 4.2.2. For 0 ≤ i ≤ n and 0 ≤ k ≤ n
2 :

(i) If i < k or i > n− k then

LKi
∩ Sn−k,k = {0}

(ii) If k ≤ i ≤ n− k then LKi
∩ Sn−k,k is spanned by

ψki :=
k∑
j=0

(−1)j (n− i− k + 1)j
(i− j + 1)j

F ik,j

Proof. We have determined a base of LKi
, of which the elements F ikl with pa-

rameters a = max{0, k + i− n} ≤ l ≤ min{k, i} = b span LKi
∩Mn−k,k, so we

want to find linear combinations of them which lie in ker(d):

0 = d

b∑
l=a

αlF
i
kl

=
b∑
l=a

αl
(
(i− l + 1)F ik−1,l−1 + (n− i− k + l + 1)F ik−1,l

)
=

b−1∑
l=a

(αl+1(i− l) + αl(n− i− k + l + 1))F ik−1,l

+ αb(n− i− k + b+ 1)F ik−1,b + αa(i− a+ 1)F ik−1,a−1

Since the F ikl are orthogonal to each other this gives us a system of linear
equations.

If i < k then F ik−1,b = F ik−1,i 6= 0, hence αb has to be zero. Substituting
αb = 0 into the other equations gives us αb−1 = 0, and repeating it shows that
all αl have to be zero, so there are no invariant elements in Sn−k,k for these
parameters apart from 0. Analogously we can show that if i > n − k then
F ik−1,a−1 = F ik−1,k+i−n−1 6= 0 and again all αl have to be zero.

In the case k ≤ i ≤ n − k we have F ik−1,b = F ik−1,a−1 = 0, while the other
F ik−1,l appearing in the equations are all not zero. Solving

αl+1(i− l) + αl(n− i− k + l + 1) = 0 for 0 ≤ l ≤ k − 1

results in the one dimensional space

αt = α0

t−1∏
l=0
−n− i− k + l + 1

i− l
= α0(−1)t (n− i− k + 1)t

(i− t+ 1)t
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We have now found theK-invariant elements in Sn−k,k, but we really wanted
the K-invariant elements in the equivalent submodule in Mn−j,j . We assumed
that k ≤ n

2 , so we know from the decomposition earlier that if j < k, then there
is no such submodule, and with that no intertwining function. Otherwise we
know that

Sn−k,k ∼= (d∗)j−kSn−k,k ⊆Mn−j,j

Hence
ψkij := (d∗)j−kψki

is the function we now need to calculate.

Lemma 4.2.3. For k ≤ j and k + i− n ≤ l ≤ min{k, i}:

(d∗)j−kF ikl = (j − k)!
min{i,j−k+l}∑

t=max{l,j−n+i}

(
t

l

)(
j − t
k − l

)
F ijt

Proof. We first check what multiple applications of d∗ to δA with A ∈ Ωk do.
We have seen that

d∗δA =
∑
t/∈A

δA∪{t} = 1!
∑

B⊇A,|B|=k+1

δB

Inductively one finds the formula

(d∗)s+1δA = d∗(d∗)sδA = d∗s!
∑

B⊇A,|B|=k+s

δB = (s+ 1)!
∑

B⊇A,|B|=k+s+1

δB

so we have
(d∗)j−kδA = (j − k)!

∑
B⊇A,|B|=j

δB for A ∈ Ωk

To express the F ikl in the Dirac basis we use the formula seen in the proof
of lemma 4.2.1, where I = {1, . . . , i}:

F ikl = σl(I)σk−l(Ic) =

 ∑
B⊆I,|B|=l

δB

 ∑
B⊆Ic,|B|=k−l

δB

 =
∑

|B|=k,|B∩I|=l

δB

The operator d∗ is linear, meaning we can combine the formulas to get

(d∗)j−kF ikl =
∑
|B|=k
|B∩I|=l

(d∗)j−kδB

=
∑
|B|=k
|B∩I|=l

(j − k)!
∑
A⊇B
|A|=j

δA
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The second sum can be split further by how much A intersects I. The minimum
intersection is l if all new entries fit in Ic, otherwise it is j − (n− i), while the
maximum intersection is either all of I or j − (k − l):

= (j − k)!
∑
|B|=k
|B∩I|=l

min{i,j−k+l}∑
t=max{l,j−n+i}

∑
A⊇B
|A|=j
|A∩I|=t

δA

= (j − k)!
min{i,j−k+l}∑

t=max{l,j−n+i}

∑
|A|=j
|A∩I|=t

∑
|B|=k
|B∩I|=l
B⊆A

δA

In the last sum we have to choose l elements of B in A ∩ I and the remaining
k − l elements in A \ I:

= (j − k)!
min{i,j−k+l}∑

t=max{l,j−n+i}

∑
|A|=j
|A∩I|=t

(
t

l

)(
j − t
k − l

)
δA

= (j − k)!
min{i,j−k+l}∑

t=max{l,j−n+i}

(
t

l

)(
j − t
k − l

)
F ijt

We can now calculate (d∗)j−kψki, which we will use to determine the inter-
twining functions:

Theorem 4.2.4. The Si×Sn−i invariant elements in the submodule equivalent
to Sn−k,k in Mn−j,j are spanned by:

ψkij = (d∗)j−kψki = (j − k)!
i∑
t=0

(
k∑
l=0

(−1)l (n− i− k + 1)l
(i− l + 1)l

(
t

l

)(
j − t
k − l

))
F ijt

Proof.

(d∗)j−kψki =
k∑
l=0

(−1)l (n− i− k + 1)l
(i− l + 1)l

(d∗)j−kF ik,l

=
k∑
l=0

(−1)l (n− i− k + 1)l
(i− l + 1)l

(j − k)!
min{i,j−k+l}∑

t=max{l,j−n+i}

(
t

l

)(
j − t
k − l

)
F ijt

We can switch the two sums if we switch the sides of t ≥ l and t ≤ j − k + l:

= (j − k)!
i∑

t=max{0,j−n+i}

·

 min{t,k}∑
l=max{0,t−j+k}

(−1)l (n− i− k + 1)l
(i− l + 1)l

(
t

l

)(
j − t
k − l

)F ijt
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The ranges of the sums can be simplified: If t < j − n + i then F ijt = 0, if
l < t− j + k then

(
j−t
k−l
)

= 0, and if l > t then
(
t
l

)
= 0:

= (j − k)!
i∑
t=0

(
k∑
l=0

(−1)l (n− i− k + 1)l
(i− l + 1)l

(
t

l

)(
j − t
k − l

))
F ijt

We can rewrite this formula with Hahn polynomials, which are a family of
orthogonal polynomials for certain weights (which we will encounter later):

Qk(t;−a− 1,−b− 1, j) := 1(
j
k

) k∑
l=0

(−1)l
(
b−k+l
l

)(
a
l

) (
j − t
k − l

)(
t

l

)

Using the formula
(
n
k

)
= (n−k+1)k

k! from earlier we can see that this formula is,
apart from a factor, the same as the one we found:

ψkij = (j − k)!
(
j

k

) i∑
t=0

Qk(t;−i− 1,−(n− i)− 1, j)F ijt

Since we are only interested in the subspace spanned by ψkij we can ignore the
factors before the sum.

If we now apply the (inverse of the) isomorphism Sn�H → Snb = Ωj , π 7→
π(b) (with b = 1j0n−j) to this function we find the span of intertwining, or
H-K-invariant functions in Vk. To do this we first want to define

v′(π) := t ∈ N with
(
F ijt
)
π(b) 6= 0

which is well defined since the F ijt form an orthonormal basis of 0/1 vectors of
the K invariant elements of RΩj . So we can assign each permutation a number
depending on in which K-orbit π(b) lies. We have seen that F ijt is one at exactly
the coordinates with t elements in {1, . . . , i}, hence

v′(π) = |π({1, . . . , j}) ∩ {1, . . . , i}|

Theorem 4.2.5. Let H = Sj×Sn−j, K = Si×Sn−i and Vk ⊆ RSn be the span
of the matrix entries of a representation corresponding to the irreducible module
Sn−k,k. The H-K invariant vectors in Vk are spanned by

ψ′k,H−K(π) := Qk(v′(π);−i− 1,−(n− i)− 1, j)

Proof. By definition of v′(π) we have

(ψkij)π(b) = (j − k)!
(
j

k

)
Qk(v′(π);−i− 1,−(n− i)− 1, j)

The two factors can be left out because they are independent of π.
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To make things a bit more consistent with other sources ([4], [6], [14]) and
get the additional property ψkij(id) = 1 we apply another tranformation to the
Hahn polynomial:

Theorem 4.2.6. The H-K invariant vectors in Vk are spanned by

ψk,H−K(π) := Qk(v(π);−(n− i)− 1,−i− 1, j)

with
v(π) := j − |π({1, . . . , j}) ∩ {1, . . . , i}| = j − v′(π)

Proof.

ψ′k,H−K(π) = Qk(v′(π);−i− 1,−(n− i)− 1, j)

= 1(
j
k

) k∑
l=0

(−1)l (n− i− k + l)!(i− l)!
(n− i− k)!i!

(
v′(π)
l

)(
j − v′(π)
k − l

)
Substituting k − l for l gives us:

= 1(
j
k

) (−1)k
k∑
l=0

(−1)l (n− i− l)!(i− k + l)!
(n− i− k)!i!

(
v(π)
l

)(
j − v(π)
k − l

)
= (−1)k (i− k)!(n− i)!

(n− i− k)!i!
1(
j
k

)
·
k∑
l=0

(−1)l (n− i− l)!(i− k + l)!
(i− k)!(n− i)!

(
v(π)
l

)(
j − v(π)
k − l

)
= (−1)k (i− k)!(n− i)!

(n− i− k)!i! Qk(v(π);−(n− i)− 1,−i− 1, j)

The factor before the Hahn polynomial is independent of π, so we can ignore
it.

4.3 The Isomorphism

We have now determined

zk,i,j : Sn → R, π 7→ Ek,i,j(π(1i0n−i), 1j0n−j)

up to a factor. To determine it, we now just need to calculate the norms of zkij
and ψk,H−K :

Lemma 4.3.1.

(zkij , zkij) =
(
n

i

)−1(
n

j

)−1
hk
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Proof.

(zkij , zkij) = 1
|Sn|

∑
π∈Sn

zkij(π)2

= 1
n!
∑
π∈Sn

Ek,i,j(π(1i0n−i), 1j0n−j)2

= 1
n!
∑
π∈Sn

(
1
|V |

hk∑
l=1

ek,i,l(π(1i0n−i))ek,j,l(1j0n−j)
)2

= 1
n!|V |2

hk∑
l,l′=1

(
ek,j,l(1j0n−j)ek,j,l′(1j0n−j)

·
∑
π∈Sn

ek,i,l(π(1i0n−i))ek,i,l′(π(1i0n−i))
)

Since Hk,i has non-zero entries only on the coordinates with weight i, the right
sum is exactly a multiple of 〈ek,i,l, ek,i,l′〉. The base is orthonormal, so this sum
is zero for l 6= l′, and it sums over every coordinate of Ωi as many times as there
are elements in the stabilizer |(Sn)1i0n−i | = |Si × Sn−i|:

= i!(n− i)!
n!|V |

hk∑
l=1

ek,j,l(1j0n−j)2

=
(
n

i

)−1
Ek,j,j(1j0n−j , 1j0n−j)

Since Ek,j,j is Sn-invariant, every entry on the diagonal for coordinates of weight
j is the same, and the others are zero because of the decomposition. So the entry
above is exactly an |Ωj | =

(
n
j

)
’th of the trace of Ek,j,j :

trace(Ek,j,j) =
∑
x∈Ωj

1
|V |

hk∑
l=1

ek,j,l(x)2 =
hk∑
l=1

(ek,j,l, ek,j,l) = hk

Lemma 4.3.2. For k ≤ j ≤ i ≤ n− k we have

(ψk,H−K , ψk,H−K) = 1
hk

(−i)k(j − n)k
(−j)k(i− n)k

Proof. Here we require j ≤ i to make the calculations easier, but this is not
a problem since ETkij = Ekji. First, let us calculate how often v(π) = j −
|π({1, . . . , j})∩{1, . . . , i}| = j−|π(J)∩ I| assumes a certain value 0 ≤ x ≤ j. It
has to send the elements of J to j − x positions in I, and x positions in Ic. At
the same time we can permute all elements in J and in Jc freely, so we have:

|{π ∈ Sn | v(π) = x}| = j!(n− j)!
(

i

j − x

)(
n− i
x

)
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These are, with another n! factor, exactly the before (not explicitly) men-
tioned weights the Hahn polynomials are orthogonal for, which also means that
the norm for these weights is well known:

j∑
x=0

(
a
x

)(
b

j−x
)(

a+b
j

) Qk(x;−a− 1,−b− 1, j)2

=
[(
a+ b

k

)
−
(
a+ b

k − 1

)]−1 (j − k)!(a− k)!(a+ b− j)!b!
j!a!(a+ b− j − k)!(b− k)!

We are not going to prove this formula here, as its proof is quite long and
technical (see [7] for an outline).

(ψk,H−K , ψk,H−K) = 1
n!
∑
π∈Sn

Qk(v(π);−(n− i)− 1,−i− 1, j)2

=
j∑

x=0

(
n−i
x

)(
i

j−x
)(

n
j

) Qk(x;−(n− i)− 1,−i− 1, j)2

= 1
hk

(j − k)!(n− i− k)!(n− j)!i!
j!(n− i)!(n− j − k)!(i− k)!

= 1
hk

(−i)k(j − n)k
(−j)k(i− n)k

Where we used n!
(n−k)! = (n− k + 1)k = (−1)k(−n)k in the last step.

We have now everything we need to determine Ek,i,j explicitly:
Proposition 4.3.3. For k ≤ j ≤ i ≤ n− k we have:

Ek,i,j(x, y) = hk

((
n

i

)(
n

j

)
(−i)k(j − n)k
(−j)k(i− n)k

)− 1
2

Qk(v(x, y);−(n−i)−1,−i−1, j)

if x ∈ Ωi and y ∈ Ωj, otherwise Ek,i,j(x, y) = 0. For i ≤ j we have Ek,i,j =
ETk,j,i. The function v is defined for x ∈ Ωi and y ∈ Ωj by:

v(x, y) = |{l | xl = 0, yl = 1}| = j − |x ∩ y| = |y \ x|

Where we interpret Ωl = {0, 1}n=l in the first and Ωl = {A ⊆ {1, . . . , n} | |A| =
l} in the second and third formula.

Proof. By the definition of Ek,i,j and the decomposition into the Hk,i we know
this matrix has to be zero for coordinates (x, y) with x /∈ Ωi or y /∈ Ωj , and it
is easy to see that ETk,i,j = Ek,j,i.

For the remaining coordinates we first determine zkij with the correct scale:

|zkij(π)| = Ek,i,j(π(1i0n−i), 1j0n−j)

=
√

(zkij , zkij)√
(ψk,H−K , ψk,H−K)

ψk,H−K

= hk

((
n

i

)(
n

j

)
(−i)k(j − n)k
(−j)k(i− n)k

)− 1
2

Qk(v(π);−(n− i)− 1,−i− 1, j)
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The matrix Ek,i,j is Sn invariant, hence the entry of the matrix at position
(x, y) for x ∈ Ωi and y ∈ Ωj depends only on how much x and y overlap.
Because we have v(x, y) = v(π) for the coordinates above, we have determined
the functions up to sign.

We know by definition that the diagonal entries of Ek,i,i are non-negative,
which are given by zkii(id). Because of v(id) = 0 and

Qk(0;−a− 1,−b− 1, j) =
(
j
k

)(
j
k

) = 1

the sign of zkii has to be positive.

For the remaining signs positivity should follow by theorem 2.2.1, but I could
not find a full argument.

With this we can finally calculate the matrices ϕ(Br) for elements Br of the
canonical basis of B, which are needed for the block diagonalization. Remember
here that ϕ(Ek,i,j) was defined as the matrix with only a 1 in position i, j of
the block corresponding to k.

Theorem 4.3.4. For 0 ≤ s ≤ r ≤ n:

ϕ(B(r,s,d)) =
min{n−r,s}∑

k=0

vr,s,d
hk

Ek,r,s(x, y)ϕ(Ek,r,s)

For any (x, y) ∈ (r, s, d), which is defined below. If s ≥ r, then ϕ(B(r,s,d)) =
ϕ(B(s,r,r−s+d))T .

Proof. Earlier we saw for Sn-orbits r of V × V that

ϕ(Br) =
bn

2 c∑
k=0

n−k∑
i,j=k

pr(k, i, j)ϕ(Ek,i,j)

where Br =
∑
pr(k, i, j)Ek,i,j . Shortly after we found a formula in proposition

2.2.3 to instead use use coefficients qk,i,j(r) of the "reverse" linear combination
Ek,i,j =

∑
qk,i,j(r)Br:

pr(k, i, j) = |r|
hk
qk,i,j(r)

Let us now first explicitly determine the Sn-orbits, giving us the elements
Br of the canonical basis of B. If we have an element (x, y) ∈ V ×V = {0, 1}n×
{0, 1}n, then Sn operates on the pair by permuting the coordinates of the indices
of x and y. This does neither change the Hamming distance between x and y
(and so v(π(x), π(y)) = v(x, y)), nor does it change the weight of x or y. If we
have a second pair (x′, y′) with the same distance and weights, then it is clear
we can always find a π ∈ Sn with (π(x), π(y)) = (x′, y′), meaning the orbits can
be indexed by triples:

(r, s, d) := {(x, y) ∈ V × V | |x| = r, |y| = s, v(x, y) = d}
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The size of the orbit is

vr,s,d := |(r, s, d)| =
(
n

d

)
︸︷︷︸
xi=0
yi=1

(
n− d
s− d

)
︸ ︷︷ ︸
xi=1
yi=1

(
n− s

r − s+ d

)
︸ ︷︷ ︸

xi=1
yi=0

It is now simple to express the Ek,i,j with elements of B(r,s,d): The entry
Ek,i,j(x, y) is zero if x /∈ Ωi or y /∈ Ωj , and we have determined the value of the
matrix depending on v(x, y), so we have:

qk,i,j(r, s, d) =
{
Ek,i,j(x, y) if i = r, j = s for (x, y) ∈ (r, s, d)
0 otherwise

Together we get for (x, y) ∈ (r, s, d):

ϕ(B(r,s,d)) =
bn

2 c∑
k=0

n−k∑
i,j=k

p(r,s,d)(k, i, j)ϕ(Ek,i,j)

=
bn

2 c∑
k=0

n−k∑
i,j=k

vr,s,d
hk

qk,i,j(r, s, d)ϕ(Ek,i,j)

=
min{n−r,s}∑

k=0

vr,s,d
hk

Ek,r,s(x, y)ϕ(Ek,r,s)

The range of k was changed in the last step, because Ek,r,s is indexed by k ≤
i, j ≤ n− k, hence we sum over zeroes for the k’s outside of k ≤ s ≤ r ≤ n− k.

Finally, to see that ϕ(B(r,s,d)) = ϕ(B(s,r,r−s+d))T for s ≥ r, we use the same
symmetry of the Ek,i,j and v(y, x) = |x| − |y|+ v(x, y).

We could use this formula as-is to compute all bounds for up to n = 17, but
afterwards we run into issues with double-precision solvers. Instead we can use a
small transformation, which allows us to use integer valued matrices, increasing
the range of usable n to 26. We do this with a very similar factor to the one
used in [12] by Schrijver:

Theorem 4.3.5. For all coefficients αr,s,d ∈ R with αr,s,d = αs,r,r−s+d:∑
r,s,d

αr,s,dϕ(B(r,s,d)) < 0 ⇔
∑
r,s,d

αr,s,dϕ
′(B(r,s,d)) < 0

Where ϕ′ is defined for 0 ≤ s ≤ r ≤ n by:

ϕ′(B(r,s,d)) =
min{n−r,s}∑

k=0
vr,s,d

(
n− r
k

)(
s

k

)
Qk(d;−(n−r)−1,−r−1, s)ϕ(Ek,r,s)

Proof. We require αr,s,d = αs,r,r−s+d because we only consider symmetric ma-
trices, and we had the same condition in the original convex program earlier in
this thesis.
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A symmetric block matrix is positive semidefinite if and only if all of its
blocks are positive semidefinite, so we can modify each block separately, as long
as their positivity is unchanged. A matrix X ∈ SN<0 is positive semidefinite if
and only if it is the Gram matrix of vectors x1, . . . , xN ∈ RN :

Xij = 〈xi, xj〉

Thus for any function f : {1, . . . , N} → R \ {0} the following holds true:

X < 0 ⇔ X ′ < 0 with X ′ij = f(i)f(j)Xij = 〈f(i)xi, f(j)xj〉

The factor before the Hahn polynomial in our formula is not entirely sym-
metric in r and s, but it turns out we can remove most of it anyway. For this
we set for k = 0, . . . , bn2 c:

fk(i) = 1
k!

√
n!

(n− k − i)!(i− k)!

This function is independent of d, which means that we can apply it to blocks
we get by summing over different d’s. Applying this function to the coefficients
pr,s,d(k, r, s) results in the simplified formula:

fk(r)fk(s)pr,s,d(k, r, s)

=vr,s,d
n!
k!k!

(
(n− k − r)!(r − k)!(n− k − s)!(s− k)!

·
(
n

r

)(
n

s

)
(−r)k(s− n)k
(−s)k(r − n)k

)− 1
2

Qk(. . .)

=vr,s,d
n!
k!k!

(
1

(n− k − r)!(r − k)!(n− k − s)!(s− k)

· (n− r)!r!(n− s)!s!(r − k)!(n− s− k)!(n− r)!s!
n!n!(s− k)!(n− r − k)!(n− s)!r!

) 1
2

Qk(. . .)

=vr,s,d
(n− r)!s!

k!k!(n− r − k)!(s− k)!Qk(. . .)

=vr,s,d
(
n− r
k

)(
s

k

)
Qk(. . .)
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Applying the symmetry
reduction

At this point we have determined the isomorphism ϕ, and have to apply it to
the Lovász-Theta function introduced in section 1.3. Before we do this for the
general case, we will first block diagonalize the case D = 0, which describes
ordinary binary block codes, and interpret the result.

5.1 The case D = 0

Here we simply have V = {0, 1}n, and the set of Sn-invariant matrices is exactly
the Terwilliger algebra B ⊆ RV×V . The Lovász-Theta number for our graph is,
as we have defined earlier, the value of the following program:

max {〈J,X〉 | tr(X) = 1, Xij = 0 if d(i, j) < d and i 6= j, X ≥ 0, X ∈ SV<0}

To determine the block diagonalization we have to calculate the values
cr := 〈J,Br〉 and air := 〈Ai, Br〉 for every orbit r = (r, s, d′) and constraint
〈Ai, X〉 = bi. The elements Br of the canonical basis were defined to be one at
coordinates (x, y) ∈ r, and zero otherwise, hence c(r,s,d′) = |(r, s, d′)| = vr,s,d′ .
All constraints except the trace one are, apart from an auxiliary variable to turn
the inequalities into equalities, of the form 〈Eij , X〉 = bi. Because of

〈Eij , Br,s,d′〉 =
{

1 if r = |i|, s = |j|, d′ = v(i, j)
0 otherwise

a lot of constraints are one and the same after the block diagonalization. We
only need one for each orbit for X ≥ 0 and another one for every orbit with
2d′+ r− s < d. We get this formula by calculating the Hamming distance from
the earlier defined v, which was used for the orbits:

d(x, y) = |(x \ y) ∪ (y \ x)| = |x| − |x ∩ y|+ v(x, y) = |x| − |y|+ 2v(x, y)

47
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Furthermore the constraintXij ≥ 0 can be removed for orbits with 2d′+r−s < d
as it is weaker than Xij = 0. Finally we have tr(X) = 〈1, X〉 = 1, which is only
affects orbits with r = s and d = 2d′ + r − s = 2d′ = 0 with factor vr,r,0 =

(
n
r

)
.

Theorem 5.1.1. The Lovász-Theta (prime) number of the graph Gn,0,d is the
value of the following block-diagonalized program:

p(n, 0, d) := max
∑

(r,s,d′)

vr,s,d′zr,s,d′

∑
(r,r,0)

vr,r,0zr,r,0 = 1

zr,s,d′ = 0 if 2d′ + r − s < d and (r, s, d′) 6= (r, r, 0)
zr,s,d′ ≥ 0 if 2d′ + r − s ≥ d or (r, s, d′) = (r, r, 0)
zr,s,d′ = zs,r,r−s+d′∑
(r,s,d′)

zr,s,d′ϕ
′(B(r,s,d′)) < 0

zr,s,d′ ∈ R for all Sn-Orbits (r, s, d′) of V × V

Proof. We applied the block diagonalization (2.0.1) with the values calculated
above. Afterwards we removed factors from two sets of constraints in the middle,
since these do not influence the result.

The program can be simplified a bit further if one wants to implement it:
The variables which are always zero can be removed fully without changing the
outcome, and substituting

z′r,s,d′ = zr,s,d′

vr,s,d′

removes all vr,s,d′ factors, including from within ϕ′(B(r,s,d′)). Note that it does
not conflict with zr,s,d′ = zs,r,r−s+d′ because vr,s,d′ = vs,r,r−s+d′ .

Here one can interpret the variables nicely: They are a similar to the distance
distribution (see [9]) of a code:

ai = 1
|C|
|{(x, y) | d(x, y) = i}|

which are the variables of Delsarte’s linear programming bound. It is clear that

|C| =
∑
i

ai a0 = 1 a1, . . . , ad−1 = 0

for any code C with minimum distance d.

Similarly, for our program we saw that for a code C the matrix X = xxT

xT x
=

xxT

|C| is feasible after forming the group average, where x is the characteristic
vector of C. Hence we get a feasible set of variables for the block diagonalized
form by

z′r,s,d′ = 1
|C|
|{(x, y) | |x| = r, |y| = s, v(x, y) = d′}|
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because of the definition of Br,s,d′ as characteristic function of the Γ-orbits. If
we set

ai =
∑
r,s,d′

2d′+r−s=i

z′r,s,d′

then it is easy to see that the three properties of the ai translate directly to the
conditions and objective function of our program:

|C| =
∑
r,s,d′

z′r,s,d′
∑
r

z′r,r,0 = 1 z′r,s,d′ = 0 if 2d′ + r − s < d

It is even possible to calculate a feasible set of z′r,s,d′ starting with a distance
distribution ai. To do this one uses that the Delsarte bound is the block diag-
onalized Lovász-Theta number of the graph Gn,0,d, if one additionally includes
bit-switches in Γ (see [11]). Hence if we require the z′r,s,d′ set to be invariant
under the bit-switches, we do get enough conditions to uniquely determine them
if we know the ai.

To actually solve this program we used Brian Borchers’ CSDP ([3]) by gen-
erating SDPA files first, for which we need to transform the program into a
primal SDP of the form

max {〈C,X〉 | 〈Ai, X〉 = bi for i = 1, . . . ,m,X < 0}

To do this we remove one of the variables zr,s,d′ , zs,r,r−s+d′ for each such pair,
allowing us to replace the matrices ϕ′(B(r,s,d′)) with the symmetric matrices
ϕ′(B(r,s,d′)) + ϕ′(B(s,r,r−s+d′)). Afterwards the program is in the negative dual
form of above program:

−min {yT b | y1A1 + . . .+ ymAm − C < 0}

The actual transformation is then straightforward.

5.2 The general case

We can easily find the diagonalized programs for the case D 6= 0 since this just
removes the vertices of the graph with weight smaller thanD, which corresponds
to a subset of the orbits. That means we simply set zr,s,d′ = 0 if r < D or s < D
(or remove the variables in the first variant) to get the program for the general
case:

Theorem 5.2.1. The Lovász-Theta (prime) number of the graph Gn,D,d is the
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value of the following block-diagonalized program:

p(n,D, d) := max
∑

(r,s,d′)∈R

vr,s,d′zr,s,d′

∑
(r,r,0)∈R

vr,r,0zr,r,0 = 1

zr,s,d′ ≥ 0 ∀(r, s, d′) ∈ R
zr,s,d′ = zs,r,r−s+d′ ∀(r, s, d′) ∈ R∑
(r,s,d′)∈R

zr,s,d′ϕ
′(B(r,s,d′)) < 0

zr,s,d′ ∈ R ∀(r, s, d′) ∈ R

Where R is the set of relevant orbits:

R :=
{

(r, s, d′) | r ≥ D, s ≥ D,
(

2d′ + r − s ≥ d or (r, s, d′) = (r, r, 0)
)}

Note here that we can additionally size down the matrices ϕ′(Br) a bit, as
ϕ′(B(r,s,d′)) only has entries at coordinates (r, s) in each block, implying these
rows and columns are zero for indices smaller than D.

A small remark about solving the SDPs in practice: To further avoid round-
ing errors as many factors as possible were cancelled out, including from within
the Hahn polynomials. The solver needs the most time in cases with small d
and small D, since then only a few/no orbits do not correspond to variables.
Solving the programs with D = d = 0 takes about 0.8 seconds at n = 10, 3.2
seconds at n = 15, 6.6 seconds at n = 20 and 19.3 seconds at n = 25. It is
significantly faster at larger d and D.
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Results

First we take a look at the case D = 0: The values of these programs match the
known bound of Delsarte for binary error-correcting codes of length n and dis-
tance d, which was expected since it is exactly the Lovász-Theta prime number
of the graphs Gn,0,d (which was proven in [11]).

Before we take a look at the data for the general case, we should consider if
there is a similar property to A(n, d) = A(n+1, d+1) for odd d for binary codes.
But it turns out we only get a partial analogue for unequal error protection
codes:

Proposition 6.0.1.

A(n,D, d) = A(n+ 1, D + 1, d+ 1) if D and d are odd

Proof. We can extend an A(n,D, d) code with a parity bit (add a bit to each
word, such that it has an even number of ones), which increases the minimum
weight to an even number. The minimum distance increases to an even number
as well, since two words with an even number of ones can only have an even
distance, and the additional bit cannot decrease the distance between words.

Conversely if we have an A(n+1, D+1, d+1) code removing the last bit (or
any other bit as long as its the same for each word) decreases n by one, while
also decreasing D and d by at most one.

We do not have a similar property if D is even and d is odd, so we would
need to include both cases A(n,D, d) and A(n+1, D+1, d+1) here. One could
argue that one is only interested in codes with both an odd D and odd d (as
even parameters do not correct more errors), but for completeness sake we will
include the data for all parameters here, including D < d.

51
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Behaviour based on D

In the general case we can observe that, if we fix d, the upper bound for the
amount of words we can fit into {0, 1}n≥D falls off with increasing D at about
the same rate as |{0, 1}n≥D| decreases:

0 (Delsarte) 4 8 12 16 20 24

4

8

12

16

20

24

Note that until about D = bn2 c the graphs falls off only slightly, because
Ωn/2 is by far the largest part of the decomposition for large n. This somewhat
visualizes the earlier mentioned result of [2], that for any D ≤ n

2 the optimal
rate of a binary code can still be reached asymptotically by increasing n, more
on that later.

The graphs appear to be in pairs (d1, d2) = (2t − 1, 2t), starting close to
each other and converging at the same time at 0. In practice we would always
choose a code with odd minimum distance d, the upper of the two graphs, as
the amount of errors that can be corrected is bd−1

2 c, which is the same for d1
and d2.
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Behaviour based on D, density variant

It might be of interest to see which codes have the highest density within
{0, 1}n≥D, so here are the graphs for

δ(n,D, d) = p(n,D, d)
|
∑n
k=D

(
n
k

)
|

4 8 12 16 20 24

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

Obviously we can fill it completely for D = n − 1, where there is just one
free spot for a single code word. In the graphs all "interesting" local maxima
are marked, which seem to lie around D = 2

3n for most n and small d it was
tested for. For example it might worth looking into the case A(24, 16, 7), the
second lowest of the marked points. The graphs for larger d always have a local
maximum at the highest D with just enough space for two words in {0, 1}n≤D,
and all graphs of course join once there is only space for a single word.
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Behaviour based on d

If we fix D and instead increase d we get graphs that should look familiar, at
least the top one for D = 0. Usually the Delsarte bound is calculated only for
every second d, since A(n, d) = A(n+1, d+1) if d is odd, resulting in a smoother
curve.

1 4 8 12 16 20 24

0

4

8

12

16

20

24

We see again that the graphs closer to the top (small D) behave very simi-
larly, in fact the graphs for D = 0, . . . , 12 are drawn nearly on top of each other
here.
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Behaviour based on n, for d = 1

Our upper bounds for A(n,D, d) do give us upper bounds for the code rates by

r = log2(A(n,D, d))
n

In [2] the authors proved that the optimal asymptotic rate of a sequence of
binary codes with fixed d

n can be reached asymptotically by UEP codes with
one special message for up to D

n = 1
2 and any d

n ∈ [0, 1
2 ]. This bound for D is

sharp for d
n = 0 (e.g. d is constant), which we can visualize:

5 10 15 20 25 30

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

The graphs for D
n < 1

2 do clearly converge in 1, the optimal rate of codes
with d = 1. The case D

n = bn2 c is close, and looks like it might still converge
with 1, but even if it does not its would not be a contradiction, as it is only
proven that there is an optimal sequence which approaches D

n = 1
2 for n→∞.

The cases with D
n > n

2 do not look like they will converge with D = 0, as
was proven in [2].
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Behaviour based on n, for d
n = 1

3

And finally, the case d
n = 1

3 , which was proven to reach the optimal rate for
D
n ≤

n
2 . While proven in the case d = 1, the authors of [2] only expected that

this bound is sharp for other ratios d
n . While we do not have enough data to be

sure (and definitely cannot prove it), it does seem to be correct:

5 10 15 20 25 30

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In conclusion, we can always set D
n = n

2 , adding one special, strongly pro-
tected word to binary error correcting codes, without lowering the rate of the
code by much, even for small n. Here there seems to be a rate-loss of about
5% at n = 24, which might still be too much to be practical, but it is definitely
lower than one might expect.
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Raw data

n = 1 Delsarte D = 0 1
d = 1 2 2 1

n = 2 Delsarte D = 0 1 2
d = 1 4 4 3 1
2 2 2 2 1

n = 3 Delsarte D = 0 1 2 3
d = 1 8 8 7 4 1
2 4 4 4 3 1
3 2 2 2 1 1

n = 4 Delsarte D = 0 1 2 3 4
d = 1 16 16 15 11 5 1
2 8 8 8 7 4 1
3 2.66667 2.66667 2.6 2.5 1 1
4 2 2 2 2 1 1

n = 5 Delsarte D = 0 1 2 3 4 5
d = 1 32 32 31 26 16 6 1
2 16 16 16 15 11 5 1
3 4 4 4 4 3 1 1
4 2.66667 2.66667 2.66667 2.6 2.5 1 1
5 2 2 2 2 1 1 1
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n = 6 Delsarte D = 0 1 2 3 4 5 6
d = 1 64 64 63 57 42 22 7 1
2 32 32 32 31 26 16 6 1
3 8 8 8 8 7 3.5 1 1
4 4 4 4 4 4 3 1 1
5 2.4 2.4 2.39529 2.36364 2.33333 1 1 1
6 2 2 2 2 2 1 1 1

n = 7 Delsarte D = 0 1 2 3 4 5 6 7
d = 1 128 128 127 120 99 64 29 8 1
2 64 64 64 63 57 42 22 7 1
3 16 16 16 15 15 9.33333 4 1 1
4 8 8 8 8 8 7 3.5 1 1
5 3 3 3 3 3 2.66667 1 1 1
6 2.4 2.4 2.4 2.39529 2.36364 2.33333 1 1 1
7 2 2 2 2 2 1 1 1 1

n = 8 Delsarte D = 0 1 2 3 4 5 6 7 8
d = 1 256 256 255 247 219 163 93 37 9 1
2 128 128 128 127 120 99 64 29 8 1
3 25.6 25.6 25.5808 25.5 23 22 12 4.5 1 1
4 16 16 16 16 15 15 9.33333 4 1 1
5 4 4 4 4 4 3.85714 3 1 1 1
6 3 3 3 3 3 3 2.66667 1 1 1
7 2.28571 2.28571 2.28521 2.2804 2.26316 2.25 1 1 1 1
8 2 2 2 2 2 2 1 1 1 1

n = 9 Delsarte D = 0 1 2 3 4 5 6 7 8 9
d = 1 512 512 511 502 466 382 256 130 46 10 1
2 256 256 256 255 247 219 163 93 37 9 1
3 42.6667 42.6667 42.6667 42.6667 41.6667 37 31 15 5 1 1
4 25.6 25.6 25.6 25.5808 25.5 23 22 12 4.5 1 1
5 6 6 6 6 6 6 5 3.33333 1 1 1
6 4 4 4 4 4 4 3.85714 3 1 1 1
7 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667 2.5 1 1 1 1
8 2.28571 2.28571 2.28571 2.28521 2.2804 2.26316 2.25 1 1 1 1
9 2 2 2 2 2 2 1 1 1 1 1
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n = 10 Delsarte D = 0 1 2 3 4 5 6 7 8 9 10
d = 1 1024 1024 1023 1013 968 848 638 386 176 56 11 1
2 512 512 512 511 502 466 382 256 130 46 10 1
3 85.3333 85.3333 85.3333 85.3333 84.3333 73.646 67 42.25 18.3333 5.5 1 1
4 42.6667 42.6667 42.6667 42.6667 42.6667 41.6667 37 31 15 5 1 1
5 12 12 12 12 12 12 11 6.6 3.66667 1 1 1
6 6 6 6 6 6 6 6 5 3.33333 1 1 1
7 3.2 3.2 3.2 3.2 3.2 3.19608 3.14286 2.75 1 1 1 1
8 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667 2.5 1 1 1 1
9 2.22222 2.22222 2.22215 2.22139 2.21732 2.2069 2.2 1 1 1 1 1
10 2 2 2 2 2 2 2 1 1 1 1 1

n = 11 Delsarte D = 0 1 2 3 4 5 6 7 8 9 10 11
d = 1 2048 2048 2047 2036 1981 1816 1486 1024 562 232 67 12 1

2 1024 1024 1024 1023 1013 968 848 638 386 176 56 11 1
3 170.667 170.667 170.667 169.667 169.667 152.797 138 100 56 22 6 1 1
4 85.3333 85.3333 85.3333 85.3333 85.3333 84.3333 73.646 67 42.25 18.3333 5.5 1 1
5 24 24 24 24 24 23 23 15.84 9 4 1 1 1
6 12 12 12 12 12 12 12 11 6.6 3.66667 1 1 1
7 4 4 4 4 4 4 4 3.69231 3 1 1 1 1
8 3.2 3.2 3.2 3.2 3.2 3.2 3.19608 3.14286 2.75 1 1 1 1
9 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.4 1 1 1 1 1
10 2.22222 2.22222 2.22222 2.22215 2.22139 2.21732 2.2069 2.2 1 1 1 1 1
11 2 2 2 2 2 2 2 1 1 1 1 1 1

n = 12 Delsarte D = 0 1 2 3 4 5 6 7 8 9 10 11 12
d = 1 4096 4096 4095 4083 4017 3797 3302 2510 1586 794 299 79 13 1

2 2048 2048 2048 2047 2036 1981 1816 1486 1024 562 232 67 12 1
3 292.571 292.571 292.562 292.5 289.923 287 248.687 221 144 72.5 26 6.5 1 1
4 170.667 170.667 170.667 170.667 169.667 169.667 152.797 138 100 56 22 6 1 1
5 40 40 39.9996 39.9798 39.8872 39.7825 36.7694 35.32 23.4 13 4.33333 1 1 1
6 24 24 24 24 24 24 23 23 15.84 9 4 1 1 1
7 5.33333 5.33333 5.33333 5.33333 5.33333 5.33333 5.33333 5.2 4.33333 3.25 1 1 1 1
8 4 4 4 4 4 4 4 4 3.69231 3 1 1 1 1
9 2.85714 2.85714 2.85714 2.85714 2.85714 2.85714 2.85185 2.82609 2.6 1 1 1 1 1
10 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.4 1 1 1 1 1
11 2.18182 2.18182 2.18181 2.18167 2.18081 2.17751 2.17073 2.16667 1 1 1 1 1 1
12 2 2 2 2 2 2 2 2 1 1 1 1 1 1

n = 13 Delsarte D = 0 1 2 3 4 5 6 7 8 9 10 11 12 13
d = 1 8192 8192 8191 8178 8100 7814 7099 5812 4096 2380 1093 378 92 14 1

2 4096 4096 4096 4095 4083 4017 3797 3302 2510 1586 794 299 79 13 1
3 512 512 512 512 511 503.888 486.333 411.667 340.667 201.2 92 30.3333 7 1 1
4 292.571 292.571 292.571 292.562 292.5 289.923 287 248.687 221 144 72.5 26 6.5 1 1
5 64 64 64 64 64 64 63 56.9089 51.5556 36.4 15.1667 4.66667 1 1 1
6 40 40 40 39.9996 39.9798 39.8872 39.7825 36.7694 35.32 23.4 13 4.33333 1 1 1
7 8 8 8 8 8 8 8 8 7 5.09091 3.5 1 1 1 1
8 5.33333 5.33333 5.33333 5.33333 5.33333 5.33333 5.33333 5.33333 5.2 4.33333 3.25 1 1 1 1
9 3.33333 3.33333 3.33333 3.33333 3.33333 3.33333 3.33333 3.33333 3.18182 2.8 1 1 1 1 1
10 2.85714 2.85714 2.85714 2.85714 2.85714 2.85714 2.85714 2.85185 2.82609 2.6 1 1 1 1 1
11 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.33333 1 1 1 1 1 1
12 2.18182 2.18182 2.18182 2.18181 2.18167 2.18081 2.17751 2.17073 2.16667 1 1 1 1 1 1
13 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
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n = 14 Delsarte D = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
d = 1 16384 16384 16383 16369 16278 15914 14913 12911 9908 6476 3473 1471 470 106 15 1

2 8192 8192 8192 8191 8178 8100 7814 7099 5812 4096 2380 1093 378 92 14 1
3 1024 1024 1024 1024 1023 1002.63 989 849.3 750 508 274 114.75 35 7.5 1 1
4 512 512 512 512 512 511 503.888 486.333 411.667 340.667 201.2 92 30.3333 7 1 1
5 128 128 128 128 128 128 127 113.839 96 74.3871 45.5 17.5 5 1 1 1
6 64 64 64 64 64 64 64 63 56.9089 51.5556 36.4 15.1667 4.66667 1 1 1
7 16 16 16 16 16 16 16 16 15 10 6 3.75 1 1 1 1
8 8 8 8 8 8 8 8 8 8 7 5.09091 3.5 1 1 1 1
9 4 4 4 4 4 4 4 4 3.94737 3.57143 3 1 1 1 1 1

10 3.33333 3.33333 3.33333 3.33333 3.33333 3.33333 3.33333 3.33333 3.33333 3.18182 2.8 1 1 1 1 1
11 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667 2.66154 2.64706 2.5 1 1 1 1 1 1
12 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.33333 1 1 1 1 1 1
13 2.15385 2.15385 2.15384 2.15382 2.15363 2.15277 2.15012 2.14545 2.14286 1 1 1 1 1 1 1
14 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1

n = 15 Delsarte D = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
d = 1 32768 32768 32767 32752 32647 32192 30827 27824 22819 16384 9949 4944 1941 576 121 16 1

2 16384 16384 16384 16383 16369 16278 15914 14913 12911 9908 6476 3473 1471 470 106 15 1
3 2048 2048 2048 2047 2047 2012 1984 1767.14 1571 1184 736 365 141 40 8 1 1
4 1024 1024 1024 1024 1024 1023 1002.63 989 849.3 750 508 274 114.75 35 7.5 1 1
5 256 256 256 256 256 255.264 255 228.882 207 157 113 56 20 5.33333 1 1 1
6 128 128 128 128 128 128 128 127 113.839 96 74.3871 45.5 17.5 5 1 1 1
7 32 32 32 32 32 32 32 31 31 22.8571 16 7.11111 4 1 1 1 1
8 16 16 16 16 16 16 16 16 16 15 10 6 3.75 1 1 1 1
9 5 5 5 5 5 5 5 5 5 4.70588 4 3.2 1 1 1 1 1

10 4 4 4 4 4 4 4 4 4 3.94737 3.57143 3 1 1 1 1 1
11 3 3 3 3 3 3 3 3 3 2.90909 2.66667 1 1 1 1 1 1
12 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667 2.66154 2.64706 2.5 1 1 1 1 1 1
13 2.33333 2.33333 2.33333 2.33333 2.33333 2.33333 2.33333 2.33333 2.33333 2.28571 1 1 1 1 1 1 1
14 2.15385 2.15385 2.15385 2.15384 2.15382 2.15363 2.15277 2.15012 2.14545 2.14286 1 1 1 1 1 1 1
15 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

n = 16 Delsarte D = 0 1 2 3 4 5 6
d = 1 65536 65536 65535 65519 65399 64839 63019 58651

2 32768 32768 32768 32767 32752 32647 32192 30827
3 3640.89 3640.89 3640.88 3640.83 3638.12 3633.33 3558.01 3470.42
4 2048 2048 2048 2048 2047 2047 2012 1984
5 425.558 425.558 425.558 425.556 425.535 425.38 422.007 416.335
6 256 256 256 256 256 256 255.264 255
7 50.717 50.717 50.717 50.717 50.717 50.717 50.7087 50.5674
8 32 32 32 32 32 32 32 32
9 6.66667 6.66667 6.66667 6.66667 6.66667 6.66667 6.66667 6.66667

10 5 5 5 5 5 5 5 5
11 3.42857 3.42857 3.42857 3.42857 3.42857 3.42857 3.42857 3.42857
12 3 3 3 3 3 3 3 3
13 2.54545 2.54545 2.54545 2.54545 2.54545 2.54545 2.54545 2.54539
14 2.33333 2.33333 2.33333 2.33333 2.33333 2.33333 2.33333 2.33333
15 2.13333 2.13333 2.13333 2.13333 2.13328 2.13306 2.13225 2.1301
16 2 2 2 2 2 2 2 2

n = 16 7 8 9 10 11 12 13 14 15 16
d = 1 50643 39203 26333 14893 6885 2517 697 137 17 1

2 27824 22819 16384 9949 4944 1941 576 121 16 1
3 2981.68 2602 1813.33 1039.83 477 171 45.3333 8.5 1 1
4 1767.14 1571 1184 736 365 141 40 8 1 1
5 363.596 318.293 250.333 159.667 68 22.6667 5.66667 1 1 1
6 228.882 207 157 113 56 20 5.33333 1 1 1
7 47.9082 46.7692 38.8571 20.1481 8.5 4.25 1 1 1 1
8 31 31 22.8571 16 7.11111 4 1 1 1 1
9 6.66667 6.53846 5.66667 4.47368 3.4 1 1 1 1 1

10 5 5 4.70588 4 3.2 1 1 1 1 1
11 3.42775 3.4 3.1875 2.83333 1 1 1 1 1 1
12 3 3 2.90909 2.66667 1 1 1 1 1 1
13 2.54088 2.53191 2.42857 1 1 1 1 1 1 1
14 2.33333 2.33333 2.28571 1 1 1 1 1 1 1
15 2.12676 2.125 1 1 1 1 1 1 1 1
16 2 2 1 1 1 1 1 1 1 1
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n = 17 Delsarte D = 0 1 2 3 4 5 6 7
d = 1 131072 131072 131071 131054 130918 130238 127858 121670 109294

2 65536 65536 65536 65535 65519 65399 64839 63019 58651
3 6553.6 6553.6 6553.6 6553.6 6552.6 6543.14 6508.6 6324.49 6007.89
4 3640.89 3640.89 3640.89 3640.88 3640.83 3638.12 3633.33 3558.01 3470.42
5 682.667 682.667 682.667 682.667 682.667 682.667 681.667 676.312 661.01
6 425.558 425.558 425.558 425.558 425.556 425.535 425.38 422.007 416.335
7 81.4545 81.4545 81.4545 81.4545 81.4545 81.4545 81.4545 81.3818 80.0093
8 50.717 50.717 50.717 50.717 50.717 50.717 50.717 50.7087 50.5674
9 10 10 10 10 10 10 10 10 10

10 6.66667 6.66667 6.66667 6.66667 6.66667 6.66667 6.66667 6.66667 6.66667
11 4 4 4 4 4 4 4 4 4
12 3.42857 3.42857 3.42857 3.42857 3.42857 3.42857 3.42857 3.42857 3.42857
13 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8
14 2.54545 2.54545 2.54545 2.54545 2.54545 2.54545 2.54545 2.54545 2.54539
15 2.28571 2.28571 2.28571 2.28571 2.28571 2.28571 2.28571 2.28571 2.28571
16 2.13333 2.13333 2.13333 2.13333 2.13333 2.13328 2.13306 2.13225 2.1301
17 2 2 2 2 2 2 2 2 2

n = 17 8 9 10 11 12 13 14 15 16 17
d = 1 89846 65536 41226 21778 9402 3214 834 154 18 1

2 50643 39203 26333 14893 6885 2517 697 137 17 1
3 5041.12 4183 2703 1437 613 205 51 9 1 1
4 2981.68 2602 1813.33 1039.83 477 171 45.3333 8.5 1 1
5 563.218 481.857 409 205 81.6 25.5 6 1 1 1
6 363.596 318.293 250.333 159.667 68 22.6667 5.66667 1 1 1
7 74.3572 67.9375 51.8095 25.5 10.2857 4.5 1 1 1 1
8 47.9082 46.7692 38.8571 20.1481 8.5 4.25 1 1 1 1
9 10 9 6.92308 5 3.6 1 1 1 1 1

10 6.66667 6.53846 5.66667 4.47368 3.4 1 1 1 1 1
11 4 3.85714 3.48387 3 1 1 1 1 1 1
12 3.42775 3.4 3.1875 2.83333 1 1 1 1 1 1
13 2.8 2.73913 2.57143 1 1 1 1 1 1 1
14 2.54088 2.53191 2.42857 1 1 1 1 1 1 1
15 2.28571 2.25 1 1 1 1 1 1 1 1
16 2.12676 2.125 1 1 1 1 1 1 1 1
17 2 1 1 1 1 1 1 1 1 1

n = 18 Delsarte D = 0 1 2 3 4 5 6 7
d = 1 262144 262144 262143 262125 261972 261156 258096 249528 230964

2 131072 131072 131072 131071 131054 130918 130238 127858 121670
3 13107.2 13107.2 13107.2 13107.2 13106.2 13070.4 13050.2 12641.1 12243
4 6553.6 6553.6 6553.6 6553.6 6553.6 6552.6 6543.14 6508.6 6324.49
5 1289.48 1289.48 1289.48 1289.48 1289.48 1289.46 1288.46 1280.98 1240.54
6 682.667 682.667 682.667 682.667 682.667 682.667 682.667 681.667 676.312
7 145.297 145.297 145.297 145.297 145.297 145.297 145.297 145.297 144.128
8 81.4545 81.4545 81.4545 81.4545 81.4545 81.4545 81.4545 81.4545 81.3818
9 20 20 20 20 20 20 20 20 20

10 10 10 10 10 10 10 10 10 10
11 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8
12 4 4 4 4 4 4 4 4 4
13 3.11111 3.11111 3.11111 3.11111 3.11111 3.11111 3.11111 3.11111 3.11111
14 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8
15 2.46154 2.46154 2.46154 2.46154 2.46154 2.46154 2.46154 2.46154 2.46136
16 2.28571 2.28571 2.28571 2.28571 2.28571 2.28571 2.28571 2.28571 2.28571
17 2.11765 2.11765 2.11765 2.11765 2.11764 2.11758 2.11734 2.11658 2.11484
18 2 2 2 2 2 2 2 2 2
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n = 18 8 9 10 11 12 13 14 15 16 17 18
d = 1 199140 155382 106762 63004 31180 12616 4048 988 172 19 1

2 109294 89846 65536 41226 21778 9402 3214 834 154 18 1
3 10532.9 9174.2 6541.75 3933 1947.5 776.2 243.25 57 9.5 1 1
4 6007.89 5041.12 4183 2703 1437 613 205 51 9 1 1
5 1107.07 913.369 752.469 554.714 259.4 96.9 28.5 6.33333 1 1 1
6 661.01 563.218 481.857 409 205 81.6 25.5 6 1 1 1
7 137.782 123.216 100.587 69.2143 32.5714 12.6667 4.75 1 1 1 1
8 80.0093 74.3572 67.9375 51.8095 25.5 10.2857 4.5 1 1 1 1
9 20 19 13.5714 8.63636 5.58824 3.8 1 1 1 1 1

10 10 10 9 6.92308 5 3.6 1 1 1 1 1
11 4.8 4.75 4.38462 3.8 3.16667 1 1 1 1 1 1
12 4 4 3.85714 3.48387 3 1 1 1 1 1 1
13 3.10959 3.09302 2.95556 2.71429 1 1 1 1 1 1 1
14 2.8 2.8 2.73913 2.57143 1 1 1 1 1 1 1
15 2.45756 2.45161 2.375 1 1 1 1 1 1 1 1
16 2.28571 2.28571 2.25 1 1 1 1 1 1 1 1
17 2.11236 2.11111 1 1 1 1 1 1 1 1 1
18 2 2 1 1 1 1 1 1 1 1 1

n = 19 Delsarte D = 0 1 2 3 4 5 6 7 8
d = 1 524288 524288 524287 524268 524097 523128 519252 507624 480492 430104

2 262144 262144 262144 262143 262125 261972 261156 258096 249528 230964
3 26214.4 26214.4 26214.4 26213.4 26213.4 26156.4 26108.4 25386.9 24715.6 21948.2
4 13107.2 13107.2 13107.2 13107.2 13107.2 13106.2 13070.4 13050.2 12641.1 12243
5 2373.08 2373.08 2373.08 2373.08 2373.08 2373.08 2372.08 2351.27 2300.12 2096.33
6 1289.48 1289.48 1289.48 1289.48 1289.48 1289.48 1289.46 1288.46 1280.98 1240.54
7 290.595 290.595 290.595 290.595 290.595 290.595 290.595 290.217 288.079 276.901
8 145.297 145.297 145.297 145.297 145.297 145.297 145.297 145.297 145.297 144.128
9 40 40 40 40 40 40 40 40 39.4629 39

10 20 20 20 20 20 20 20 20 20 20
11 6 6 6 6.00001 6 6 6 6 6 6
12 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8
13 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
14 3.11111 3.11111 3.11111 3.11111 3.11111 3.11111 3.11111 3.11111 3.11111 3.11111
15 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667
16 2.46154 2.46154 2.46154 2.46154 2.46154 2.46154 2.46154 2.46154 2.46154 2.46136
17 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25
18 2.11765 2.11765 2.11765 2.11765 2.11765 2.11764 2.11758 2.11734 2.11658 2.11484
19 2 2 2 2 2 2 2 2 2 2

n = 19 9 10 11 12 13 14 15 16 17 18 19
d = 1 354522 262144 169766 94184 43796 16664 5036 1160 191 20 1

2 199140 155382 106762 63004 31180 12616 4048 988 172 19 1
3 19390 14966.7 9976 5600.48 2594 970 286 63.3333 10 1 1
4 10532.9 9174.2 6541.75 3933 1947.5 776.2 243.25 57 9.5 1 1
5 1835.55 1519.46 1200.71 739.286 324 114 31.6667 6.66667 1 1 1
6 1107.07 913.369 752.469 554.714 259.4 96.9 28.5 6.33333 1 1 1
7 253.28 222.305 154.462 93.0612 42.2222 16 5 1 1 1 1
8 137.782 123.216 100.587 69.2143 32.5714 12.6667 4.75 1 1 1 1
9 39 30.1587 21.5909 11.1111 6.25 4 1 1 1 1 1

10 20 19 13.5714 8.63636 5.58824 3.8 1 1 1 1 1
11 6 5.71429 5 4.13793 3.33333 1 1 1 1 1 1
12 4.8 4.75 4.38462 3.8 3.16667 1 1 1 1 1 1
13 3.5 3.41463 3.18182 2.85714 1 1 1 1 1 1 1
14 3.10959 3.09302 2.95556 2.71429 1 1 1 1 1 1 1
15 2.66667 2.62295 2.5 1 1 1 1 1 1 1 1
16 2.45756 2.45161 2.375 1 1 1 1 1 1 1 1
17 2.25 2.22222 1 1 1 1 1 1 1 1 1
18 2.11236 2.11111 1 1 1 1 1 1 1 1 1
19 2 1 1 1 1 1 1 1 1 1 1
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n = 20 Delsarte D = 0 1 2 3 4 5 6
d = 1 1.04858e+06 1.04858e+06 1.04858e+06 1.04855e+06 1.04836e+06 1.04723e+06 1.04238e+06 1.02688e+06

2 524288 524288 524288 524287 524268 524098 523128 519253
3 47662.5 47662.6 47662.6 47662.5 47659.7 47653 47523.5 47330
4 26214.4 26214.4 26214.4 26214.4 26213.4 26213.4 26156.4 26108.4
5 4443.12 4443.12 4443.12 4443.12 4443.11 4442.93 4441.86 4428.42
6 2373.08 2373.08 2373.08 2373.08 2373.08 2373.08 2373.08 2372.08
7 571.745 571.535 571.535 571.535 571.535 571.534 571.497 570.532
8 290.595 290.595 290.595 290.595 290.595 290.595 290.595 290.595
9 64 64 64 64 64 64 64 64

10 40 40 40 40 40 40 40 40
11 8 8 8 8 8 8 8 8
12 6 6 6 6 6 6 6 6
13 4 4 4 4 4 4 4 4
14 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
15 2.90909 2.90909 2.90909 2.90909 2.90909 2.90909 2.90909 2.90909
16 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667 2.66667
17 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
18 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25
19 2.10526 2.10526 2.10526 2.10526 2.10526 2.10525 2.10518 2.10493
20 2 2 2 2 2 2 2 2

n = 20 7 8 9 10 11 12 13 14 15 16 17 18 19 20
d = 1 988116 910600 784626 616666 431910 263950 137980 60460 21700 6196 1351 211 21 1

2 507624 480493 430104 354522 262144 169766 94184 43796 16664 5036 1160 191 20 1
3 45854.4 44007.6 37933 32795 23808 14868.5 7822 3402 1198 333.5 70 10.5 1 1
4 25386.9 24715.6 21948.2 19390 14966.7 9976 5600.48 2594 970 286 63.3333 10 1 1
5 4373.74 4210.73 3692.64 3063.31 2401.18 1939 970 400 133 35 7 1 1 1
6 2351.27 2300.12 2096.33 1835.55 1519.46 1200.71 739.286 324 114 31.6667 6.66667 1 1 1
7 568.159 555.076 516.852 465.741 359.077 245.286 126.667 56 21 5.25 1 1 1 1
8 290.217 288.079 276.901 253.28 222.305 154.462 93.0612 42.2222 16 5 1 1 1 1
9 63.9785 63.1351 60.8927 59.5092 50.3788 29.1667 15 7 4.2 1 1 1 1 1

10 40 39.4629 39 39 30.1587 21.5909 11.1111 6.25 4 1 1 1 1 1
11 8 8 8 7.875 7 5.72727 4.5 3.5 1 1 1 1 1 1
12 6 6 6 6 5.71429 5 4.13793 3.33333 1 1 1 1 1 1
13 4 4 4 3.97297 3.76923 3.4186 3 1 1 1 1 1 1 1
14 3.5 3.5 3.5 3.5 3.41463 3.18182 2.85714 1 1 1 1 1 1 1
15 2.90909 2.90909 2.90728 2.89655 2.8 2.625 1 1 1 1 1 1 1 1
16 2.66667 2.66667 2.66667 2.66667 2.62295 2.5 1 1 1 1 1 1 1 1
17 2.4 2.39973 2.39655 2.39241 2.33333 1 1 1 1 1 1 1 1 1
18 2.25 2.25 2.25 2.25 2.22222 1 1 1 1 1 1 1 1 1
19 2.10424 2.10281 2.10092 2.1 1 1 1 1 1 1 1 1 1 1
20 2 2 2 2 1 1 1 1 1 1 1 1 1 1

n = 21 Delsarte D = 0 1 2 3 4 5 6 7
d = 1 2.09715e+06 2.09715e+06 2.09715e+06 2.09713e+06 2.09693e+06 2.09559e+06 2.08962e+06 2.06926e+06 2.01499e+06

2 1.04858e+06 1.04858e+06 1.04857e+06 1.04857e+06 1.04856e+06 1.04836e+06 1.04722e+06 1.04237e+06 1.02687e+06
3 87381.3 87381.4 87381.4 87381.3 87380.6 87368.6 87311.7 86937 86105.1
4 47662.5 47662.5 47662.5 47662.5 47662.5 47659.6 47653 47523.5 47329.9
5 7723.89 7723.88 7723.88 7723.89 7723.88 7723.88 7722.56 7716.73 7681.76
6 4443.12 4443.12 4443.12 4443.11 4443.12 4443.11 4442.94 4441.86 4428.42
7 1024 1024 1024 1024 1024 1024 1024 1024 1023
8 571.535 571.534 571.534 571.535 571.534 571.534 571.533 571.497 570.531
9 95.3191 95.3191 95.3181 95.3191 95.3191 95.3191 95.3191 95.3192 95.3191

10 64 63.9999 64 64 64 63.9999 64 64 64
11 15.9999 12 12 12 12 12 12 12 12
12 8 8 8 8 8 8 8 8 8
13 4.66667 4.66667 4.66667 4.66667 4.66666 4.66667 4.66667 4.66667 4.66667
14 4 4 4 4 4 4 4 4 4
15 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2
16 2.90909 2.90909 2.90909 2.90909 2.90909 2.90909 2.90909 2.90909 2.90909
17 2.57143 2.57143 2.57143 2.57143 2.57143 2.57143 2.57143 2.57143 2.57143
18 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
19 2.22222 2.22222 2.22222 2.22222 2.22222 2.22222 2.22222 2.22222 2.22222
20 2.10526 2.10526 2.10526 2.10526 2.10526 2.10526 2.10525 2.10518 2.10493
21 2 2 2 2 2 2 2 2 2
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n = 21 8 9 10 11 12 13 14 15 16 17 18 19 20 21
d = 1 1.89871e+06 1.69524e+06 1.40129e+06 1.04858e+06 695860 401930 198440 82160 27896 7547 1562 232 22 1

2 988116 910594 784626 616665 431910 263950 137980 60460 21700 6196 1351 211 21 1
3 82687.3 77132.8 65168.3 54142 36994 21704 10736 4400 1464 386 77 11 1 1
4 45854.4 44007.5 37933 32795 23808 14868.5 7822 3402 1198 333.5 70 10.5 1 1
5 7551.61 7209.98 6146.56 5193.01 3782.4 2665.75 1255 488.667 154 38.5 7.33333 1 1 1
6 4373.74 4210.73 3692.66 3063.31 2401.18 1939 970 400 133 35 7 1 1 1
7 990.716 967.016 870.182 759.592 598.143 349.333 176 77 23.1 5.5 1 1 1 1
8 568.159 555.076 516.852 465.741 359.077 245.286 126.667 56 21 5.25 1 1 1 1
9 95.2211 93.7671 89.4569 83.923 68.9258 41.25 22 7.85714 4.4 1 1 1 1 1

10 63.9786 63.1351 60.8928 59.5092 50.3788 29.1667 15 7 4.2 1 1 1 1 1
11 12 11.9998 12 11 8.8 6.6 4.88889 3.66667 1 1 1 1 1 1
12 8 8 8 7.875 7 5.72727 4.5 3.5 1 1 1 1 1 1
13 4.66667 4.66666 4.66667 4.52941 4.16216 3.66667 3.14286 1 1 1 1 1 1 1
14 4 4 4 3.97297 3.76923 3.4186 3 1 1 1 1 1 1 1
15 3.2 3.2 3.2 3.14286 2.98305 2.75 1 1 1 1 1 1 1 1
16 2.90909 2.90909 2.90728 2.89655 2.8 2.625 1 1 1 1 1 1 1 1
17 2.57143 2.57143 2.57143 2.53846 2.44444 1 1 1 1 1 1 1 1 1
18 2.4 2.39973 2.39655 2.39241 2.33333 1 1 1 1 1 1 1 1 1
19 2.22222 2.22222 2.22222 2.2 1 1 1 1 1 1 1 1 1 1
20 2.10424 2.10281 2.10092 2.1 1 1 1 1 1 1 1 1 1 1
21 2 2 2 1 1 1 1 1 1 1 1 1 1 1

n = 22 Delsarte D = 0 1 2 3 4 5 6 7 8
d = 1 4.1943e+06 4.19431e+06 4.1944e+06 4.19431e+06 4.19407e+06 4.19267e+06 4.18534e+06 4.15902e+06 4.08442e+06 3.91372e+06

2 2.09715e+06 2.09714e+06 2.0972e+06 2.09715e+06 2.09715e+06 2.0969e+06 2.0956e+06 2.0896e+06 2.06928e+06 2.01502e+06
3 174763 174762 174763 174762 174761 174706 174679 173652 172991 165985
4 87381.3 87381.2 87381.3 87381.3 87381.1 87380.2 87368.6 87312.4 86936.7 86104.8
5 13775.9 13775.9 13775.9 13775.9 13775.9 13775.9 13774.9 13769.8 13738.9 13591.8
6 7723.89 7723.88 7723.87 7723.84 7723.86 7723.86 7723.88 7722.54 7716.67 7681.68
7 2048 2048.01 2048 2048.08 2048 2048 2048 2048 2047 1936.61
8 1024 1024 1024 1024 1024 1024 1024 1023.98 1024 1023
9 151.864 151.864 151.864 151.864 151.864 151.863 151.864 151.864 151.864 151.853

10 95.3191 95.3189 95.3191 95.3191 95.3187 95.3186 95.3195 95.32 95.3191 95.3191
11 24 23.9995 23.9999 24 24 23.9996 23.9989 24 24 24
12 12 12 12 12 12 12 12 12 12 12
13 5.6 5.6 5.6 5.59999 5.59996 5.6 5.6 5.6 5.6 5.60001
14 4.66667 4.66667 4.66667 4.66667 4.66667 4.66667 4.66667 4.66667 4.66667 4.66667
15 3.55556 3.55555 3.55556 3.55556 3.55556 3.55556 3.55555 3.55556 3.55556 3.55556
16 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.19999 3.2
17 2.76923 2.76921 2.76923 2.76921 2.76923 2.76923 2.76923 2.76923 2.76923 2.76923
18 2.57143 2.57143 2.57143 2.57143 2.57143 2.57143 2.57143 2.57143 2.57143 2.57143
19 2.35294 2.35294 2.35294 2.35293 2.35294 2.35294 2.35294 2.35294 2.35294 2.35294
20 2.22222 2.22222 2.22222 2.22222 2.22222 2.22222 2.22222 2.22222 2.22222 2.22222
21 2.09524 2.09524 2.09522 2.09523 2.09524 2.09523 2.09521 2.09514 2.09489 2.09427
22 2 2 2 2 2 2 2 2 2 2

n = 22 9 10 11 12 13 14 15 16 17 18 19 20 21 22
d = 1 3.59394e+06 3.09653e+06 2.44991e+06 1.74445e+06 1.09779e+06 600370 280600 110056 35443 9109 1794 254 23 1

2 1.89872e+06 1.69522e+06 1.40131e+06 1.04857e+06 695859 401930 198440 82160 27896 7547 1562 232 22 1
3 158067 136992 118511 87339.8 56252.1 31088.4 14505.3 5619.67 1772 443.75 84.3333 11.5 1 1
4 82686.8 77133.7 65168.3 54142 36994 21704 10736 4400 1464 386 77 11 1 1
5 13033.4 11942.6 9913.04 7987.07 6016.42 3606.25 1603.33 591.333 177.1 42.1667 7.66667 1 1 1
6 7551.59 7209.97 6146.57 5193.01 3782.4 2665.75 1255 488.667 154 38.5 7.33333 1 1 1
7 1837.25 1799.26 1541 1112.34 831.84 507 253 88.55 25.3 5.75 1 1 1 1
8 990.716 967.016 870.182 759.598 598.143 349.333 176 77 23.1 5.5 1 1 1 1
9 150.864 146.159 136.783 118.507 90.3571 63.25 25.8163 8.84615 4.6 1 1 1 1 1

10 95.2211 93.7668 89.4563 83.9231 68.9258 41.25 22 7.85714 4.4 1 1 1 1 1
11 24 24 23 17.25 11.5 7.66667 5.30769 3.83333 1 1 1 1 1 1
12 12 11.9999 12 11 8.8 6.6 4.88889 3.66667 1 1 1 1 1 1
13 5.6 5.6 5.55172 5.19355 4.6 3.92683 3.28571 1 1 1 1 1 1 1
14 4.66667 4.66667 4.66667 4.52941 4.16216 3.66667 3.14286 1 1 1 1 1 1 1
15 3.55556 3.55528 3.53846 3.40741 3.17241 2.875 1 1 1 1 1 1 1 1
16 3.2 3.2 3.2 3.14286 2.98305 2.75 1 1 1 1 1 1 1 1
17 2.76923 2.76737 2.76 2.68831 2.55556 1 1 1 1 1 1 1 1 1
18 2.57143 2.57143 2.57143 2.53846 2.44444 1 1 1 1 1 1 1 1 1
19 2.3526 2.34995 2.34694 2.3 1 1 1 1 1 1 1 1 1 1
20 2.22222 2.22222 2.22222 2.2 1 1 1 1 1 1 1 1 1 1
21 2.09308 2.0916 2.09091 1 1 1 1 1 1 1 1 1 1 1
22 2 2 2 1 1 1 1 1 1 1 1 1 1 1
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n = 23 Delsarte D = 0 1 2 3 4 5 6 7 8
d = 1 8.38861e+06 8.38857e+06 8.38845e+06 8.38851e+06 8.38843e+06 8.38651e+06 8.37763e+06 8.34465e+06 8.24302e+06 7.99788e+06

2 4.1943e+06 4.19412e+06 4.19424e+06 4.19407e+06 4.19439e+06 4.194e+06 4.19232e+06 4.18498e+06 4.15895e+06 4.08448e+06
3 349525 349527 349525 349523 349523 349444 349374 347667 346316 334128
4 174763 174764 174764 174763 174761 174760 174711 174674 173651 172988
5 24107.9 24107.8 24107.8 24107.8 24107.8 24107.8 24106.8 24103.1 24073.8 23961.8
6 13775.9 13775.8 13776.1 13775.7 13775.9 13775.7 13775.6 13774.9 13769.6 13738.6
7 4096 4095.97 4095.97 4095.98 4095.99 4094.99 4094.96 4095 4095.27 3906.18
8 2048 2047.99 2048.02 2047.93 2047.99 2048.41 2048 2047.86 2048 2046.97
9 280 280 279.994 279.999 279.999 279.984 279.991 279.964 279.987 279.977

10 151.864 151.864 151.861 151.856 151.863 151.862 151.861 151.864 151.858 151.864
11 48 47.9999 47.9987 47.9977 48 47.9986 47.9982 47.9976 47.9971 47.999
12 24 23.9997 23.9998 24 23.9996 23.9987 24.0004 23.9991 23.9991 23.9994
13 7 6.99999 7 6.99999 6.99996 7 7 7 7 7
14 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6
15 4 3.99997 4 4 3.99998 4 3.99994 4 3.99996 4
16 3.55556 3.55555 3.55555 3.55556 3.55539 3.55555 3.55555 3.55555 3.55556 3.55555
17 3 3 3 3 2.99995 3 3 2.99999 3 3
18 2.76923 2.76923 2.76921 2.76923 2.76923 2.76923 2.76923 2.76923 2.76923 2.76923
19 2.5 2.5 2.5 2.5 2.5 2.5 2.49999 2.5 2.5 2.49998
20 2.35294 2.35293 2.35294 2.35294 2.35294 2.35294 2.35294 2.35294 2.35294 2.35293
21 2.2 2.2 2.19997 2.2 2.2 2.19999 2.2 2.2 2.2 2.2
22 2.09524 2.09524 2.09524 2.09524 2.09522 2.09521 2.09523 2.09521 2.09513 2.09489
23 2 2 2 2 2 2 2 2 2 2

n = 23 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
d = 1 7.5076e+06 6.69102e+06 5.54639e+06 4.19447e+06 2.84224e+06 1.69818e+06 880970 390656 145499 44552 10903 2048 277 24 1

2 3.91384e+06 3.59393e+06 3.09645e+06 2.44987e+06 1.74442e+06 1.09781e+06 600370 280600 110056 35443 9109 1794 254 23 1
3 320984 285238 251782 197621 137846 83846.2 43770 19320 7096 2126.2 507 92 12 1 1
4 165991 158067 136991 118511 87337.5 56251.3 31088.4 14505.3 5619.67 1772 443.75 84.3333 11.5 1 1
5 23598.1 22319.8 19953.3 16188.6 12464.1 9622 4808 2025 709.4 202.4 46 8 1 1 1
6 13591.8 13033.3 11943.5 9913.04 7987.06 6016.42 3606.25 1603.33 591.333 177.1 42.1667 7.66667 1 1 1
7 3671.74 3343.98 3336 2378.38 1641.17 1161.59 760 303.6 101.2 27.6 6 1 1 1 1
8 1936.53 1837.12 1799.26 1541 1112.34 831.855 507 253 88.55 25.3 5.75 1 1 1 1
9 278.976 273.331 257.262 224.353 172.042 119.059 77.449 30.3297 10 4.8 1 1 1 1 1

10 151.853 150.864 146.157 136.783 118.507 90.3571 63.25 25.8163 8.84615 4.6 1 1 1 1 1
11 47.2641 47.002 46.999 37.6364 27.6 16 9 5.76 4 1 1 1 1 1 1
12 23.9988 23.9998 23.9997 22.9991 17.25 11.5 7.66666 5.30769 3.83333 1 1 1 1 1 1
13 7 7 6.99999 6.72 6 5.09091 4.2 3.42857 1 1 1 1 1 1 1
14 5.60002 5.6 5.6 5.55172 5.19355 4.6 3.92683 3.28571 1 1 1 1 1 1 1
15 3.99999 3.99999 4 3.91837 3.69231 3.36842 3 1 1 1 1 1 1 1 1
16 3.55555 3.55556 3.55528 3.53846 3.40741 3.17241 2.875 1 1 1 1 1 1 1 1
17 3 3 3 2.9589 2.8421 2.66667 1 1 1 1 1 1 1 1 1
18 2.76922 2.76923 2.76737 2.76 2.68831 2.55556 1 1 1 1 1 1 1 1 1
19 2.5 2.5 2.5 2.47423 2.4 1 1 1 1 1 1 1 1 1 1
20 2.35292 2.3526 2.34995 2.34694 2.3 1 1 1 1 1 1 1 1 1 1
21 2.19999 2.2 2.2 2.18182 1 1 1 1 1 1 1 1 1 1 1
22 2.09427 2.09308 2.0916 2.09091 1 1 1 1 1 1 1 1 1 1 1
23 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
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n = 24 Delsarte D = 0 1 2 3 4 5 6 7 8 9
d = 1 1.67772e+07 1.6778e+07 1.6777e+07 1.67766e+07 1.67798e+07 1.67741e+07 1.67643e+07 1.67215e+07 1.65853e+07 1.62454e+07 1.55049e+07

2 8.38861e+06 8.38704e+06 8.38788e+06 8.38808e+06 8.38745e+06 8.38745e+06 8.3855e+06 8.37675e+06 8.34293e+06 8.24154e+06 7.99684e+06
3 645278 645268 645261 645256 645263 645245 645058 644678 641035 636390 611068
4 349525 349510 349486 349506 349501 349508 349405 349311 347634 346298 334087
5 48148.9 48147.4 48147.6 48147.8 48148.1 48147.9 48146.9 48138.8 48096.2 47891.9 47101.5
6 24107.9 24105.9 24106.8 24106.6 24105.8 24105.5 24105.4 24104.2 24099.7 24070.8 23958.2
7 6474.52 6474.4 6474.43 6474.44 6474.46 6474.4 6474.23 6473.31 6469.38 6439.81 6264.15
8 4096 4095.21 4095.39 4095.78 4095.7 4095.85 4094.01 4094.24 4094.28 4093.38 3905.57
9 574.002 551.286 551.336 551.345 551.269 551.319 551.331 551.336 551.219 551.059 549.533

10 280 279.966 279.958 279.917 279.941 279.964 279.977 279.951 279.938 279.919 279.932
11 75.1304 75.1249 75.1241 75.1236 75.1203 75.1273 75.1247 75.1264 75.1238 75.1229 75.1073
12 48 47.9912 47.9937 47.995 47.989 47.9913 47.9928 47.9952 47.9975 47.9879 47.9799
13 9.33333 9.33278 9.33319 9.33326 9.33315 9.33326 9.33316 9.33292 9.3331 9.33278 9.33233
14 7 7 7.00001 6.99951 6.9994 6.9999 7.00018 6.99979 6.99994 6.99937 6.99968
15 4.57143 4.57142 4.5714 4.57141 4.57142 4.57142 4.57128 4.57129 4.57131 4.57142 4.57147
16 7.03854 4 3.99946 4 3.99999 3.99999 4 4 4 3.99999 4
17 3.27273 3.27272 3.27273 3.27273 3.27272 3.27272 3.27194 3.27273 3.27273 3.27272 3.27269
18 3 3 3 3 3 2.99999 3 3 2.99998 3 2.99993
19 2.66667 2.66667 2.66667 2.66666 2.66667 2.66665 2.66666 2.66667 2.66666 2.66672 2.66666
20 2.5 2.5 2.5 2.49999 2.5 2.5 2.5 2.50001 2.5 2.5 2.5
21 2.5569 2.31541 2.31579 2.31552 2.31579 2.31578 2.31578 2.31578 2.31578 2.31579 2.31574
22 2.2 2.2 2.2 2.2 2.2 2.19999 2.2 2.2 2.2 2.2 2.2
23 2.09508 2.08695 2.08695 2.08694 2.08691 2.08695 2.08695 2.08692 2.08684 2.0866 2.08604
24 2 2 2 1.9998 1.99998 1.99999 2 2 2 2 2

n = 24 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
d = 1 1.41981e+07 1.22368e+07 9.74008e+06 7.03646e+06 4.54035e+06 2.57916e+06 1.27163e+06 536155 190051 55455 12951 2325 301 25 1

2 7.50646e+06 6.68936e+06 5.54597e+06 4.19417e+06 2.8424e+06 1.69818e+06 880968 390656 145499 44552 10903 2048 277 24 1
3 577852 501543 432095 322554 213173 122706 60663.9 25400 8867.5 2531 576 100 12.5 1 1
4 320961 285176 251770 197612 137846 83845.9 43770 19320 7096 2126.2 507 92 12 1 1
5 44967.1 40691.7 33762.2 26961.3 19633.9 13361.1 6326 2531 844.333 230 50 8.33333 1 1 1
6 23592.1 22316.6 19952.8 16188.6 12463.8 9622 4808 2025 709.4 202.4 46 8 1 1 1
7 6013.55 5531.57 4968.89 3626.23 2477.53 1627.42 949.749 361.429 115 30 6.25 1 1 1 1
8 3670.88 3343.38 3335.92 2378.31 1641.15 1161.59 760 303.6 101.2 27.6 6 1 1 1 1
9 534.983 517.05 466.428 389.706 263.857 158.465 94.7801 35.7143 11.3636 5 1 1 1 1 1

10 278.981 273.266 257.226 224.34 172.036 119.059 77.449 30.3297 10 4.8 1 1 1 1 1
11 74.3466 72.2464 71.1206 62.7267 39.9997 25 10.7143 6.25 4.16667 1 1 1 1 1 1
12 47.2564 46.9949 46.9939 37.6359 27.6 16 9 5.76 4 1 1 1 1 1 1
13 9.33286 9.33262 9.21025 8.33329 7 5.64516 4.48718 3.57143 1 1 1 1 1 1 1
14 6.99989 6.99977 6.99953 6.71999 6 5.09091 4.2 3.42857 1 1 1 1 1 1 1
15 4.57143 4.57142 4.54545 4.34783 4 3.57143 3.125 1 1 1 1 1 1 1 1
16 3.99991 3.99998 4 3.91836 3.69231 3.36842 3 1 1 1 1 1 1 1 1
17 3.27273 3.27213 3.26087 3.16901 3 2.77778 1 1 1 1 1 1 1 1 1
18 2.99998 3 3 2.9589 2.84211 2.66667 1 1 1 1 1 1 1 1 1
19 2.66663 2.66484 2.65957 2.60417 2.5 1 1 1 1 1 1 1 1 1 1
20 2.5 2.5 2.5 2.47423 2.4 1 1 1 1 1 1 1 1 1 1
21 2.3154 2.31318 2.31092 2.27268 1 1 1 1 1 1 1 1 1 1 1
22 2.2 2.19996 2.19999 2.18182 1 1 1 1 1 1 1 1 1 1 1
23 2.08504 2.08386 2.08333 1 1 1 1 1 1 1 1 1 1 1 1
24 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
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n = 25 Delsarte D = 0 1 2 3 4 5 6
d = 1 3.35544e+07 3.35506e+07 3.35514e+07 3.35475e+07 3.35432e+07 3.35437e+07 3.35286e+07 3.34784e+07

2 1.67772e+07 1.67705e+07 1.67661e+07 1.67713e+07 1.67739e+07 1.6764e+07 1.67597e+07 1.67565e+07
3 1.19837e+06 1.19834e+06 1.19819e+06 1.19823e+06 1.1983e+06 1.19833e+06 1.19817e+06 1.19748e+06
4 645278 645050 645032 645066 645067 645168 645015 644737
5 95325.1 93614.2 93612.6 93622.9 93616.9 93618.2 93618 93600.5
6 48148.9 48133.4 48134.5 48138.8 48131.5 48135.6 48137.8 48127.4
7 12125.3 10433.8 10433.6 10434.3 10433.9 10433.8 10434.2 10434.1
8 6474.52 6473.43 6473.35 6472.72 6472.6 6472.82 6473.45 6472.78
9 1040.21 1040.02 1040.04 1039.95 1039.86 1039.95 1039.81 1039.95

10 555.764 551.156 550.972 551.013 551.151 550.844 551.064 551
11 113.311 113.297 113.282 113.287 113.295 113.272 113.284 113.296
12 83.488 75.1059 75.0955 75.1182 75.1081 75.1036 75.1081 75.112
13 14 13.9923 13.999 13.9899 13.9969 13.9993 13.995 13.9964
14 9.33333 9.32988 9.33243 9.3297 9.33307 9.33296 9.3328 9.33232
15 5.33333 5.33328 5.33327 5.33298 5.33283 5.33326 5.33255 5.33324
16 8.93398 4.57137 4.57135 4.57102 4.57106 4.57083 4.57071 4.57115
17 3.6 3.59994 3.59981 3.59985 3.59994 3.59979 3.59992 3.59991
18 5.2647 3.27241 3.27269 3.27269 3.27266 3.2727 3.27269 3.27263
19 2.85714 2.85701 2.85711 2.85714 2.85697 2.85713 2.85711 2.857
20 2.66667 2.66661 2.66659 2.66653 2.66652 2.66648 2.6666 2.66659
21 2.44444 2.44443 2.44299 2.44439 2.44443 2.44442 2.44439 2.44438
22 2.31579 2.31578 2.31576 2.31568 2.31574 2.31568 2.31574 2.31575
23 2.38016 2.1818 2.18178 2.18181 2.18178 2.18178 2.18178 2.18176
24 2.08696 2.08689 2.08671 2.0869 2.08688 2.08692 2.08693 2.08687
25 2 1.99994 2 1.99999 2 1.99999 2 1.99994

n = 25 7 8 9 10 11 12 13 14
d = 1 3.33085e+07 3.28183e+07 3.17379e+07 2.9701e+07 2.64188e+07 2.1972e+07 1.67776e+07 1.15777e+07

2 1.67079e+07 1.65702e+07 1.62341e+07 1.54984e+07 1.41864e+07 1.2233e+07 9.73873e+06 7.03528e+06
3 1.19556e+06 1.18614e+06 1.16954e+06 1.11266e+06 1.0235e+06 871393 726548 515869
4 644269 640896 636229 610826 577579 501423 432085 322499
5 93523.7 93254.7 92009.2 89802.7 83287.1 70856.7 57430 42339.7
6 48116.2 48078.6 47859.6 47070.9 44940.8 40681.5 33761.4 26961.7
7 10432.2 10424.1 10353.5 10162.4 9715.14 8810.07 7640.75 5575
8 6471.76 6467.22 6436.3 6260.86 6010.29 5529.8 4968.78 3626.52
9 1039.74 1039.56 1037.32 1030.32 986.224 925.387 842.664 622.188

10 550.887 550.793 550.383 549.259 534.654 516.764 466.426 389.621
11 113.296 113.273 113.24 113.096 111.652 107.876 102.725 85.8701
12 75.0803 75.0975 75.0932 75.0742 74.3437 72.2066 71.1167 62.7176
13 13.9896 13.9967 13.9909 13.9953 13.9986 13.9983 12.9993 10.7049
14 9.32943 9.33262 9.33297 9.33224 9.32937 9.3306 9.20885 8.33307
15 5.33318 5.33289 5.33282 5.33295 5.33289 5.33305 5.19986 4.83716
16 4.57128 4.57136 4.5713 4.57123 4.57134 4.57134 4.54542 4.34778
17 3.59997 3.5999 3.59994 3.59982 3.59971 3.59987 3.54543 3.39129
18 3.2726 3.27267 3.27245 3.27251 3.27248 3.27176 3.26079 3.169
19 2.85703 2.85702 2.85698 2.85688 2.85698 2.85712 2.82607 2.73681
20 2.66682 2.66661 2.66663 2.66654 2.66653 2.66467 2.65936 2.60416
21 2.44431 2.44439 2.44436 2.44438 2.44431 2.4444 2.42371 2.36364
22 2.31571 2.31567 2.31572 2.31549 2.31521 2.31297 2.31092 2.27273
23 2.18179 2.18178 2.18178 2.18173 2.18175 2.18174 2.1666 1
24 2.08686 2.0867 2.08644 2.08596 2.08479 2.08385 2.08333 1
25 1.99995 1.99997 1.99997 1.99998 2 1.99998 1 1
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n = 25 15 16 17 18 19 20 21 22 23 24 25
d = 1 7.11996e+06 3.85087e+06 1.80778e+06 726206 245506 68406 15276 2626 326 26 1

2 4.54019e+06 2.57914e+06 1.27162e+06 536155 190051 55455 12951 2325 301 25 1
3 323437 176578 82876.9 32998.3 10976.3 2991 651 108.333 13 1 1
4 213155 122707 60664.4 25400 8867.5 2531 576 100 12.5 1 1
5 31116.6 18280.4 8223.49 3133.38 997.667 260 54.1667 8.66667 1 1 1
6 19633.8 13361.1 6326.17 2531 844.333 230 50 8.33333 1 1 1
7 3735.54 2283.99 1175.64 427.143 130 32.5 6.5 1 1 1 1
8 2477.52 1627.42 949.747 361.429 115 30 6.25 1 1 1 1
9 413.006 214.619 116.071 42.2078 13 5.2 1 1 1 1 1

10 263.853 158.464 94.7802 35.7143 11.3636 5 1 1 1 1 1
11 64.9917 30.9524 13 6.78261 4.33333 1 1 1 1 1 1
12 39.9983 25 10.7143 6.25 4.16667 1 1 1 1 1 1
13 8.27253 6.27577 4.78947 3.71429 1 1 1 1 1 1 1
14 6.99992 5.64516 4.48718 3.57143 1 1 1 1 1 1 1
15 4.33331 3.78176 3.25 1 1 1 1 1 1 1 1
16 4 3.57143 3.125 1 1 1 1 1 1 1 1
17 3.16216 2.88889 1 1 1 1 1 1 1 1 1
18 3 2.77778 1 1 1 1 1 1 1 1 1
19 2.6 1 1 1 1 1 1 1 1 1 1
20 2.5 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1 1
22 1 1 1 1 1 1 1 1 1 1 1
23 1 1 1 1 1 1 1 1 1 1 1
24 1 1 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1 1 1

n = 26 Delsarte D = 0 1 2 3 4 5 6
d = 1 6.71089e+07 6.7055e+07 6.69472e+07 6.68482e+07 6.69253e+07 6.69136e+07 6.70757e+07 6.68709e+07

2 3.35544e+07 3.34986e+07 3.34581e+07 3.34601e+07 3.34908e+07 3.34833e+07 3.34603e+07 3.34741e+07
3 2.39675e+06 2.39563e+06 2.39574e+06 2.39487e+06 2.39587e+06 2.39486e+06 2.39599e+06 2.3926e+06
4 1.19837e+06 1.19688e+06 1.19688e+06 1.19695e+06 1.19701e+06 1.19763e+06 1.1966e+06 1.19697e+06
5 163840 163764 163765 163767 163752 163770 163765 163798
6 95325.1 93554 93510.1 93481.7 93503.8 93507.2 93558.8 93525.6
7 18189.6 18180.5 18176.5 18174.7 18176.1 18183.2 18183.8 18157.7
8 10435 10428.5 10426.5 10424.7 10426.8 10427.7 10424.9 10422.6
9 1765.52 1744.83 1764.36 1763.23 1762.66 1764.17 1763.1 1763.96

10 1040.21 1038.96 1038.65 1038.87 1039.08 1038.46 1038.93 1039.44
11 170.667 170.515 170.437 170.424 170.503 170.516 170.549 170.451
12 113.311 113.228 113.169 113.202 113.147 113.136 113.223 113.144
13 28 27.877 27.9603 27.8661 27.8504 27.9366 27.8816 27.9514
14 16.9836 13.9794 13.9963 13.9898 14.5143 13.9722 13.9913 13.9785
15 6.4 6.39952 6.39631 6.3995 6.39819 6.39955 6.3994 6.39313
16 11.3932 5.33309 5.32938 5.33153 5.33145 5.33278 5.33289 5.33293
17 4 3.99913 3.9996 3.99914 3.99986 3.99864 3.99969 3.99915
18 3.6 3.59985 3.59908 3.59982 3.59988 3.5996 3.59974 3.59973
19 3.07692 3.07611 3.07589 3.07679 3.0762 3.07686 3.07631 3.07677
20 4.75835 2.85705 2.85642 2.85686 2.85697 2.85634 2.85682 2.85701
21 3.76728 2.58792 2.58802 2.58736 2.58777 2.58798 2.58808 2.58782
22 2.44444 2.44406 2.44395 2.44414 2.4441 2.4439 2.44429 2.44426
23 2.28571 2.28547 2.28555 2.28552 2.28556 2.28549 2.28557 2.28553
24 2.18182 2.18147 2.18149 2.18153 2.18168 2.1815 2.18168 2.18154
25 2.08 2.07974 2.07979 2.07982 2.07982 2.07989 2.07964 2.07963
26 2 1.99996 1.99994 1.99985 1.99983 1.99978 1.99978 1.99977
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n = 26 7 8 9 10 11 12 13 14
d = 1 6.66593e+07 6.60149e+07 6.45636e+07 6.14342e+07 5.59878e+07 4.83217e+07 3.87258e+07 2.83448e+07

2 3.33657e+07 3.32728e+07 3.27702e+07 3.16547e+07 2.96601e+07 2.64099e+07 2.19429e+07 1.67544e+07
3 2.39143e+06 2.36751e+06 2.35058e+06 2.2392e+06 2.10737e+06 1.83874e+06 1.58588e+06 1.19768e+06
4 1.19542e+06 1.19422e+06 1.18327e+06 1.16713e+06 1.10985e+06 1.02289e+06 869832 726599
5 163719 163529 162722 159928 152983 140552 116608 94578.9
6 93485.6 93424.4 93134.4 91829.4 89693.8 83192.8 70737.3 57423.6
7 18179.4 18157.2 18068.1 17728.5 17126 16346.8 13969.5 11722.8
8 10424.4 10413.6 10413.2 10342.3 10143.8 9701.19 8801.33 7636.26
9 1762.86 1762.59 1761.97 1753.64 1727.51 1635.93 1485.21 1306.63

10 1037.55 1037.48 1037.5 1035.39 1027.88 983.194 924.409 841.477
11 170.385 170.44 170.386 170.345 169.367 163.314 157.763 141.186
12 113.099 113.26 113.106 113.148 112.902 111.688 107.763 102.702
13 27.994 27.9478 27.8801 27.9161 27.8823 27.9486 26.9932 20.9733
14 13.9706 13.9662 13.9945 13.9613 13.9692 13.9714 13.9735 12.9991
15 6.39815 6.39851 6.39815 6.39766 6.3975 6.39384 6.3526 5.99928
16 5.33079 5.33261 5.33271 5.33244 5.33164 5.33118 5.33285 5.19963
17 3.99983 3.99943 3.99935 3.9994 3.99805 3.99836 3.98218 3.85701
18 3.59964 3.59976 3.5997 3.59942 3.59953 3.59925 3.59942 3.54514
19 3.07658 3.07635 3.07658 3.07636 3.07577 3.0759 3.06792 2.99946
20 2.857 2.85674 2.85684 2.85684 2.85657 2.85697 2.85684 2.82593
21 2.58809 2.58783 2.58753 2.58803 2.58773 2.58642 2.58193 2.53844
22 2.44416 2.44425 2.44379 2.44389 2.44433 2.44418 2.44426 2.42362
23 2.28556 2.28539 2.28524 2.28485 2.28435 2.28306 2.28152 2.24997
24 2.18166 2.18121 2.18134 2.18171 2.18164 2.18127 2.18166 2.16666
25 2.07981 2.07972 2.07951 2.07899 2.0776 2.07726 2.07681 1
26 1.99977 1.9998 1.99981 1.99978 1.99998 1.99999 2 1

n = 26 15 16 17 18 19 20 21 22 23 24 25 26
d = 1 1.87024e+07 1.09719e+07 5.65872e+06 2.53401e+06 971712 313912 83682 17902 2952 352 27 1

2 1.1575e+07 7.1188e+06 3.8505e+06 1.80777e+06 726206 245506 68406 15276 2626 326 26 1
3 809160 482120 250184 111736 42404.1 13468.5 3511 732.25 117 13.5 1 1
4 515766 323408 176573 82877.4 32998.3 10976.3 2991 651 108.333 13 1 1
5 66353.6 49390.5 24675.6 10572.8 3845.28 1171 292.5 58.5 9 1 1 1
6 42325.8 31113.6 18280.3 8223.44 3133.39 997.667 260 54.1667 8.66667 1 1 1
7 8718.27 5262.34 3204.51 1442.6 501.429 146.25 35.1 6.75 1 1 1 1
8 5576.2 3735.04 2283.98 1175.64 427.143 130 32.5 6.5 1 1 1 1
9 1012.06 580.468 299.339 142.451 50.1429 15 5.4 1 1 1 1 1

10 622.189 412.994 214.619 116.071 42.2078 13 5.2 1 1 1 1 1
11 114.171 83.5589 38.9998 16.1999 7.36364 4.5 1 1 1 1 1 1
12 85.8045 64.9855 30.9521 13 6.78261 4.33333 1 1 1 1 1 1
13 14.5358 9.94714 7 5.10811 3.85714 1 1 1 1 1 1 1
14 10.7054 8.27264 6.27586 4.78947 3.71429 1 1 1 1 1 1 1
15 5.39976 4.69565 4 3.375 1 1 1 1 1 1 1 1
16 4.83717 4.33323 3.78182 3.25 1 1 1 1 1 1 1 1
17 3.6268 3.32876 3 1 1 1 1 1 1 1 1 1
18 3.39113 3.16215 2.88889 1 1 1 1 1 1 1 1 1
19 2.87233 2.69999 1 1 1 1 1 1 1 1 1 1
20 2.73681 2.6 1 1 1 1 1 1 1 1 1 1
21 2.45446 1 1 1 1 1 1 1 1 1 1 1
22 2.36363 1 1 1 1 1 1 1 1 1 1 1
23 1 1 1 1 1 1 1 1 1 1 1 1
24 1 1 1 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1 1 1 1
26 1 1 1 1 1 1 1 1 1 1 1 1
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