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G f (n) A degenerate flag, the density of G at rate f
RazT The T th level of the Razborov hierarchy
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1
Introduction

The overarching topic of this thesis is (convex) optimization under symmetries.
The basic idea is simple: A convex set C⊆ Rn contains all line segments between
pairs of elements of C . A convex optimization problem p optimizes a linear objec-
tive function f : C → R over a convex set C:

p =min f (x)

s.t. x ∈ C .

We call an invertible linear function σ : C → C a symmetry of the optimization
problem p, if both σ(C) = C and f (σ(x)) = f (x), i.e., it sends elements of C
to C , and does not change the objective value f (x). The set of all symmetries of
an optimization problem forms a group G, as applying symmetries consecutively
always results in another symmetry of the problem. In this thesis the group G is
always assumed to be finite.

Then, given an optimal solution x⋆ of p, we obtain another optimal solution
σ(x⋆) by applying a symmetry σ ∈ G to x⋆. Since the convex set C is closed
under taking convex combinations, we can, by linearity of the objective, average
an optimal solution over the whole group G to obtain an invariant optimal solution

1
|G|

∑
σ∈G

σ(x⋆).

1
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This tells us that there is always a symmetric optimal solution of p, and allows us
to rewrite the optimization problem as

p =min f (x)

s.t. x ∈ C ,

x = σ(x) for all σ ∈ G.

Often, the set of symmetric solutions {x ∈ C : x = σ(x) for all σ ∈ G} is signifi-
cantly easier to work with than C . For example, in Figure 1.1 the set C is a convex
set, with symmetry given by reflection around its horizontal axis. There the in-
variant set is simply the red horizontal line, which is both lower dimensional and
easier to describe than C .

C
x

σ(x)

Figure 1.1: A convex set C with symmetry σ, and its invariant set {x ∈ C : x =
σ(x)} in red.

This thesis investigates different approaches to symmetry reduction, both for
detection and exploitation of symmetries, as well various applications coming
from physics, queuing theory and (extremal) combinatorics. In this chapter we
give a basic introduction to convex (conic) programming, ways to relax problems
to fit this framework, even if they are not initially convex, and ways to exploit
symmetries.
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1.1 Convex (Conic) Optimization

We are interested in linear optimization over slices of (proper) convex cones. A
subset K ⊆ Rn is called a convex cone, if it is closed under non-negative linear
combinations. In other words, given any two points x , y ∈ K and nonnegative
scalars α,β ∈ R+, the vector

αx + β y

should again be an element of K.
Furthermore, we assume that K fulfills three basic properties:

• K is pointed: K∩ (−K) = {0},
• K is closed: K = cl(K),

• K has non-empty interior: int(K) ̸= ;.
The first property allows us to define a partial order on Rn by defining x ≽ y as
x − y ∈ K, while the other two properties are important to obtain strong duality
and complexity results. In particular, a closed convex cone satisfies the bipolar the-
orem assumptions, so that (K⋆)⋆ = K [Bar02, Chapter IV, Theorem (1.2)], where
K⋆ denotes the dual cone defined below (1.2). Moreover, the nonempty interior
condition allows for the Slater constraint qualification, which is a sufficient con-
dition in strong duality [Bar02, Chapter IV, page 171, exercise 4]. Finally, in the
theory of interior point methods for conic optimization (e.g. [Ren01]), the do-
main of a self-concordant barrier is usually the interior of K. Convex cones which
fulfill all three properties are called proper cones.

A primal conic optimization problem is of the form

p⋆ = inf cT x (1.1)

s.t. Ax = b,

x ∈ K,

where c is a vector in Rn, while A ∈ Rm×n and b ∈ Rm give a system of linear
equations. Since Ax = b defines an affine subspace of Rn, this is the problem of
finding a point as far as possible in direction of c in a slice of the cone K.

Duality. Every conic optimization problem has a corresponding dual optimiza-
tion problem, which optimizes over the dual cone

K⋆ := {y ∈ Rn : x T y ≥ 0 for all x ∈ K}. (1.2)
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The dual conic program of (1.1) is given by

d⋆ = sup bT y (1.3)

s.t. c − AT y ∈ K⋆,

y ∈ Rm.

The main idea of many of the bounds considered in this thesis is that every
feasible dual solution (i.e., any y with AT y − c ∈ K⋆) gives a valid bound for the
original, primal optimization problem.

Proposition 1.1 (weak duality). Let x be feasible for the primal (1.1) and y be
feasible for the dual (1.3). Then

cT x ≥ p⋆ ≥ d⋆ ≥ y T b.

Proof. Since x and y are feasible for their respective programs, we have

cT x − y T b = cT x − y T Ax = (c − AT y)︸ ︷︷ ︸
∈K⋆

T
x︸︷︷︸
∈K
≥ 0.

Linear Programming. We are mainly interested in two special cases of conic
optimization: Linear, and semidefinite programming. A linear programming prob-
lem (LP) is a problem of the form (1.1), where we optimize over the nonnegative
orthant

Rn
+ = {x ∈ Rn : x i ≥ 0 for i = 1, . . . , n}.

The nonnegative orthant is a proper cone of dimension n, which is self-dual:

(Rn
+)
⋆ = Rn

+.

Thus, primal and dual linear programs are of the form

p⋆ = inf cT x ≥ d⋆ = sup bT y

s.t. Ax = b, s.t. c − AT y ≥ 0,

x ≥ 0.
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Semidefinite Programming. The second class of problems we are interested in
optimizes over the cone of positive semidefinite matrices, given by

Sn+ := {X ∈ Sn : vT X v ≥ 0 for all v ∈ Rn},

where Sn denotes the set of symmetric n× n matrices over the real numbers, i.e.,
matrices X∈ Rn×n with X T = X . We write X ≽ 0 for X ∈ Sn+, whenever n is clear
from context. The inner product, an analogue to x T y for vectors, is here the trace
inner product, which we define by

〈X , Y 〉 := tr(X Y ) =
∑

i, j=1,...,n

X i, jYi, j .

Given any vector u ∈ Rn, the n× n matrix uuT is positive semidefinite, since,
given any other vector v, we have

vT (uuT )v = (vT u)(uT v) = (vT u)2 ≥ 0. (1.4)

Clearly, nonnegative linear combinations of positive semidefinite matrices are
again positive semidefinite, so sums of terms of the form uuT are positive semidef-
inite. Indeed, all positive semidefinite matrices are of this form.

Theorem 1.2 (spectral decomposition). Let X be a symmetric n× n matrix. Then
there exists an orthonormal basis of eigenvectors u1, . . . , un ∈ Rn with corresponding
eigenvalues λ1, . . . ,λn ∈ R, such that

X =
n∑

i=1

λiuiu
T
i .

It immediately follows that a symmetric matrix X is positive semidefinite if and
only if all of its eigenvalues are nonnegative, since, given one of the eigenvectors
ui of X , we have

uT
i Xui = λi ≥ 0,

if X is positive semidefinite. Moreover, by observation (1.4) above, conic combi-
nations of terms of the form uuT are positive semidefinite, which shows the other
direction.
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Corollary 1.3. The cone of positive semidefinite matrices is self-dual, i.e., (Sn+)
⋆ =

Sn+.

Proof. Let X be an element of (Sn+)
⋆, and v ∈ Rn be any vector. Then

vT X v = 〈 vvT︸︷︷︸
≽0

, X 〉 ≥ 0,

and thus X ∈ Sn+.
Let Y now be an element of Sn+, with spectral decomposition Y =

∑n
i=1λiuiu

T
i .

Then, for any other element X ∈ Sn+, we have

〈X , Y 〉=
n∑

i=1

λiu
T
i Xui ≥ 0,

since X is positive semidefinite and λi ≥ 0, showing that Y ∈ (Sn+)⋆.

Thus, the general form of a semidefinite programming problem (SDP) is

p⋆ = inf 〈C , X 〉 ≥ d⋆ = sup bT y

s.t. 〈Ai , X 〉= bi for i = 1, . . . , m, s.t. C −
m∑

i=1

yiAi ≽ 0,

X ≽ 0.

Here we are now working with data matrices C and Ai instead of a vector c and
matrix A before.

Remark 1.4. If we assume that all matrices C and Ai are diagonal matrices, then
the SDP simplifies to an LP. Since we can turn any LP into an SDP by turning
vectors into matrices by writing the vectors on the diagonal entries, and filling
the off-diagonal entries with zeros, linear optimization can be as special case of
SDPs.

1.2 Relaxing Non-Convex Problems by Semidefinite Pro-
gramming

In general, convex conic optimization is NP-hard (see, for example, the recent
survey [DR21] on optimization over the copositive cone). But we can solve SDPs
and LPs, for a fixed approximation error ε, in polynomial time (in the Turing
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model) using an interior point algorithm, under some weak assumptions [KV16].
More precisely, the runtime is polynomial in the size of the matrices, the number
of constraints, the bit size of the problem data, as well as the logarithms of R

r and
1
ε , where R and r are radii of balls respectively containing and contained in the
feasible set. This turns SDPs into a very powerful tool, as we can relax various
hard problems to SDPs.

Example: The Theta Function and Symmetries. Before we are going to intro-
duce some of the more general, and widely known, relaxation hierarchies, let us
first consider a basic example of a semidefinite programming relaxation. We are
going to relax the NP-complete problem of determining the size of a maximum
stable set of a (simple, undirected) graph G = (V, E). For simplicity, we enumer-
ate the vertices as V = [n] := {1, . . . , n}. Thus, the set of edges E is a subset of
{{i, j} : 1≤ i < j ≤ n}.

The Independence Number of a Graph. A set of vertices S ⊆ V is called stable,
if there are no edges between any two distinct vertices in S. We now want to
maximize the size of the stable set, which gives us the independence number α(G)
of the graph:

α(G) :=max{|S| : S is a stable set in G}.
This problem is well known to be strongly NP-complete [GJ78], and is hard to
solve in practice even for relatively small graphs.

Binary Reformulation. We can now translate α(G) into an optimization problem
over binary variables by introducing one variable x i ∈ {0, 1} for each vertex i ∈ V ,
where x i = 1 denotes that i is part of the chosen stable set S. This vector x is also
called the characteristic vector of the solution S. One way to enforce that the
chosen subset S is stable is by enforcing x i x j = 0 if {i, j} ∈ E:

α(G) =max
�

x T x : x i x j = 0 for {i, j} ∈ E, x ∈ {0,1}V	 ,

where x T x =
∑

i∈V x i = |S|.

Semidefinite Programming Bound. The basic idea of this semidefinite program-
ming bound is to replace the binary variables x with their scaled outer product

1
x T x x x T , which is a rank one positive semidefinite matrix. Relaxing the rank
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one constraint leads to the semidefinite program, first introduced by Lovász in
[Lov79], given by

α(G)≤ ϑ(G) := sup{〈J , X 〉 : X ∈ Sn+, tr(X ) = 1, X i, j = 0 for all {i, j} ∈ E}, (1.5)

where J denotes the all-one matrix of appropriate size. It is easy to check that
X̂ = 1

x T x x x T is a feasible solution of ϑ(G), if x corresponds to a stable set |S| of
G. Indeed, we have

〈J , X̂ 〉=
∑
i, j∈V

X̂ i, j =
1

x T x

∑
i, j∈V

x i x j = x T x = |S|

and

tr(X̂ ) = tr
�

1
x T x

x x T
�
=

x T x
x T x

= 1.

We defined X̂ to be positive semidefinite, and since x corresponds to a stable set
the entries X̂ i, j are zero if {i, j} is an edge of G.

The Theta Number of the 5-Cycle. Let us take a look at a small example: Let
G be the cycle on 5 vertices C5, ordered such that i connects to i + 1 and 1 to 5.
Solving the SDP (1.5) with an interior point solver returns something very close
to the optimal solution




1
5 0

p
5−1
10

p
5−1
10 0

0 1
5 0

p
5−1
10

p
5−1
10p

5−1
10 0 1

5 0
p

5−1
10p

5−1
10

p
5−1
10 0 1

5 0

0
p

5−1
10

p
5−1
10 0 1

5




with objective value
p

5> α(C5) = 2. We can see here that the returned solution
has only three unique entries: 1/5 on the diagonal, 0 for entries corresponding to
edges, and (

p
5−1)/10 for the non-edges. This is not a coincidence! The pattern

of the solution corresponds exactly to the orbits of edges (or more precisely, pairs
of vertices) under the automorphism group of C5. This observation was already
used by Lovász to compute the Shannon capacity of C5 [Lov79].

Not all feasible solutions have to be invariant under symmetries, but we will
see below that there always exists an invariant optimal solution. Interestingly, an
interior point solver will always return such a solution [Kan+01].
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Symmetric Optimal Solutions. The main idea of symmetry reduction is that,
while not all feasible solutions of convex optimization problems are symmetric,
there is always a symmetric optimal solution. Indeed, let us assume that we have
an optimal solution X̃ of ϑ(G), which is not (necessarily) symmetric. Then, for
any given automorphism σ : V → V of G, we get another optimal solution by
applying σ on both coordinates of X̃ simultaneously:

σ(X̃ ) = (X̃σ(i),σ( j))i, j∈V .

Since graph automorphisms send edges to edges,σ(X̃ ) is again a feasible solution.
Note that the matrix is positive semidefinite again, as σ(X̃ ) simply permutes rows
and columns of X̃ . Since the objective function is invariant under the action of
Aut(G), the objective value of σ(X̃ ) is the same as the one of X̃ . This shows that
the all automorphisms of G are symmetries of the SDP ϑ(G) (1.5).

As the semidefinite cone (and thus the feasible set of ϑ(G)) is a convex set,
convex combinations of feasible solutions are again feasible. This allows us to
symmetrize the optimal solution by

RAut(G)(X̃ ) :=
1

|Aut(G)|
∑

σ∈Aut(G)

σ(X̃ ),

which always gives us an optimal solution which is invariant under the action
of Aut(G). Hence, we can further restrict the feasible set of ϑ(G) to invariant
solutions:

ϑ(G) = sup 〈J , X 〉
s.t. X ∈ Sn+,

tr(X ) = 1,

X i, j = 0 for all {i, j} ∈ E,

RAut(G)(X ) = X .

The constraint RAut(G)(X ) = X ensures that X i, j = Xσ(i),σ( j) for each σ ∈
Aut(G). We can now introduce one variable for each orbit of pairs of vertices
i, j ∈ V

{(σ(i),σ( j)) : σ ∈ Aut(G)},
and rewrite the variable X in the form

X =
∑

o orbit of pairs of vertices

xoBo,
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where

(Bo)i, j =

(
1, if (i, j) ∈ o,

0, else.

This already reduces the number of variables in the SDP to the number of orbits of
pairs of vertices of G, and can give a significant speed-up for solving the problem.
Later (basics in Section 1.3.1, and details for reductions of polynomial optimiza-
tion problems in Chapter 7) we will further discuss how to block-diagonalize the
problem to reduce the sizes of the semidefinite matrices appearing in the problem.

1.2.1 Higher Order Relaxations: The Lasserre Hierarchy (for Stable
Set)

The Theta-function contains variables corresponding to all products between pairs
of variables. The Lasserre hierarchy provides a systematic way to strengthen the
bounds for binary optimization problems by adding variables for products be-
tween bigger tuples of variables.

The hierarchies we work with always come in levels, of increasing complexity
and accuracy, given by a natural number. Here, we let t denote this level of the
hierarchy. For the Theta-function we took the outer product of the characteristic
vector of a vertex set with itself. We still want to take the outer product of a vector
describing a solution, but we now extend it first to contain all products between at
most t variables.

[x]1 := (1, x1, x2, . . . , xn),

[x]2 := (1, x1, . . . , xn, x1 x2, x1 x3, . . . , xn−1 xn),
...

[x]t :=

�∏
i∈I

x i : I ⊆ [n], |I | ≤ t

�
.

The entries of the outer product [x]t[x]Tt are generally not unique: We have,
for example, that x1 · x3 = x1 x3 · x3 = x1 x3. Since all variables x i are binary,
the product of two monomials in [x]t depends only on the union of their indices.
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Hence, the outer product is of the form

[x]t[x]
T
t =

�∏
i∈I∪J

x i

�

I ,J⊆[n],
|I |,|J |≤t

≽ 0.

We can now relax this binary matrix to a general positive semidefinite matrix with
the same pattern of entries. To do this, we simply introduce a variable yJ for each
subset J of [n] with at most 2t elements, and define the moment matrix of order
t of y as

Mt(y) := (yI∪J )I ,J⊆[n],
|I |,|J |≤t

.

This leads to the definition of the tth level of the Lasserre hierarchy [Las01] (for
stable set), given by

Las2t(G) := sup
y

(∑
i∈[n]

yi : y; = 1, ye = 0 for all e ∈ E, Mt(y)≽ 0

)
. (1.6)

The first level of the Lasserre hierarchy for stable set is thus given by

Las2(G) = sup
y,Y

tr(Y )

s.t.

�
1 y T

y Y

�
≽ 0,

Yi, j = 0 for all {i, j} ∈ E

y = diag(Y ),

where diag(Y ) is the vector of diagonal entries of Y . The Lasserre hierarchy can
be seen as a generalization and strengthening of the Theta function ϑ(G), in the
sense of the following proposition.

Proposition 1.5 ([LS91, Lemma 2.17]). For any graph G, we have

ϑ(G) = Las2(G).

Symmetry in the Lasserre Hierarchy for Stable Set. Let us assume again that
the graph G, of which we want to bound the independence number, has a non-
trivial automorphism group Aut(G). In the Theta case we extended this action
to the coordinates of the semidefinite programming relaxation, i.e., to pairs of
vertices. Now, the hierarchy does not just have variables for each pair of variables,
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but for each tuple of at most 2t different variables. We extend the action of Aut(G)
in the obvious way to variables corresponding to tuples J = ( j1, . . . , jk) by

σ(yJ ) = yσ(J) = σ(yσ( j1),...,σ( jk))

for any σ in Aut(G).
With the same symmetrization argument we used in the Theta case, we can

restrict (1.6) to invariant optimal solutions to obtain a reduced, equivalent SDP.

Las2t(G) = sup
y

(∑
i∈[n]

yi : y; = 1, ye = 0∀e ∈ E, Mt(y)≽ 0,RAut(G)(y) = y

)
.

1.2.2 Relaxing Polynomial Optimization Problems: Sums-of-Squares
Hierarchies

What if we want to relax problems in variables that are not binary, or problems
with more complicated constraints? It turns out that this approach generalizes to
polynomial optimization problems. Given an objective and constraint polynomials
f , g1, . . . , gm ∈ R[x], we can define the optimization problem

inf
x

f (x) (1.7)

s.t. gi(x)≥ 0 for i = 1, . . . , m.

Here, the approach is a bit different. First, we note that minimizing f is the
same as determining the biggest scalar λ such that f − λ is nonnegative on the
set {x : gi(x) ≥ 0 for i = 1, . . . , m}. While the nonnegative polynomials form a
convex cone, there is no practical way to work with it directly, as it is (NP-)hard
to check whether a polynomial lies in it.

Instead, we relax nonnegativity to something that is easier to check: we opti-
mize over polynomials that are sums-of-squares of polynomials of a fixed degree.
Of course, as for SDPs, in computations we can only solve such problems up to an
epsilon computationally. Obviously, the square of any polynomial is nonnegative,
and the sum of nonnegative functions is again nonnegative. Thus, we obtain the
cone of sums-of-squares of polynomials:

Σ[x] :=

¨∑
i

f 2
i : fi ∈ R[x]

«
.

Sums-of-squares of polynomials correspond exactly to semidefinite matrices.
To see this, let us first take a look at a single squared polynomial f 2. Let [x]d ,
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where d = deg( f ), be the vector of all monomials up to degree d. Note that
the vector now also contains monomials with exponents higher than one, unlike
the binary case we considered before. If we store all coefficients of f in a vector
c = (cα)xα∈[x]d , we have f = cT [x]d ; thus we can write f 2 as a trace inner product
between a monomial matrix and a positive semidefinite matrix:

f 2 =

 ∑
xα∈[x]d

cαxα
!2

=
�
cT [x]d

�2

= cT [x]d[x]
T
d c

= tr([x]d[x]
T
d ccT )

=


[x]d[x]

T
d , ccT

�
.

Since the trace inner product is (bi-)linear, we obtain positive semidefinite matri-
ces from sums-of-squares, and sums-of-squares from positive semidefinite matri-
ces by spectral decomposition.

In the problem (1.7) we also have polynomial constraints of the form

gi(x)≥ 0.

We can use these in a straightforward way: We can construct nonnegative poly-
nomials on the set {x : gi(x)≥ 0 for i = 1, . . . , m} by

s0 + g1s1 + · · ·+ gmsm, where si ∈ Σ[x].
While gisi is generally not nonnegative, it sure is on the set where gi ≥ 0. Putting
things together, we can relax the problem (1.7) to an (infinite-sized) semidefinite
optimization problem by

inf
x

f (x) ≥ sup λ

s.t. gi(x)≥ 0 for i = 1, . . . , m. s.t. f −λ= s0 + g1s1 + · · ·+ gmsm,

si ∈ Σ[x].
To turn this into a finite problem (as well as a hierarchy of bounds of increas-
ing quality), we simply bound the degree of each term gisi and s0. The set of
polynomials

M(g1, . . . , gm) := {s0 + g1s1 + · · ·+ gmsm : si ∈ Σ[x]} (1.8)

is called the quadratic module generated by g1, . . . , gm.
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Theorem 1.6 (Putinar’s Positivstellensatz, [Put93]). Let

K = {x ∈ Rn : g1(x)≥ 0, . . . , gm(x)≥ 0}

and M = M(g1, . . . , gm). If M is Archimedean, i.e. there exists an N ∈ N such that

N −
n∑

i=1

x2
i ∈ M ,

then
p(x)> 0 for all x ∈ K

implies that p ∈ M.

1.3 Symmetric Convex Optimization

In most of the problems considered in this thesis we are interested in problems
with symmetries. We saw a first example of this in Section 1.2, where one of
the optimal solutions of the Theta function of the 5-cycle had just three different
entries in the matrix. But, of course, we would prefer to know this before we
solve the optimization problem, especially if the problem size is too big for it to
be solved directly. Once we know the symmetry, or some form of subspace we
can restrict our problem to, we want to reduce it further to remove the found
"redundancies" in the problem.

In this thesis we will make use of a few different techniques to determine
and exploit the symmetry of a given problem, each with their own advantages,
disadvantages, and potential applications. Here we will describe the basic idea of
symmetry reduction for semidefinite programming based on symmetries coming
from a group G. Later, in Chapter 7, we will give a more detailed introduction into
symmetry reduction for polynomial optimization, with focus on the case G = Sn.

1.3.1 Group Symmetry Reduction

Here we consider a semidefinite programming problem given in standard form

p⋆ = inf 〈C , X 〉 (1.9)

s.t. 〈Ai , X 〉= bi for i = 1, . . . , m,

X ∈ Sn
+,

where C and the Ai are symmetric n× n matrices.
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Group symmetry reduction requires that one already knows the symmetry of
a given problem, in form of a group G acting on the variables. More precisely,
let V = Rn be the n-dimensional real (or, more generally, yet not much different,
complex) vector space corresponding to the rows and columns of X . Now we pair
up each element σ ∈ G with a linear operator Pσ ∈ GL(V), such that σ 7→ Pσ is a
group-homomorphism.

In the example above we had the automorphism group of the 5-cycle C5 acting
on R5 — corresponding to the five original, binary variables — by permuting
indices. So here the operators Pσ simply correspond to permutation matrices,
when choosing the canonical basis.

Such an action of a group on a vector space is called a representation of G, or,
equivalently, turns V into a (left) G-module by definingσ(v) := Pσv for v ∈ V. We
will go into more detail about modules in the background Chapter 7, with focus
on the case G = Sn. Here, we will just say that this gives us various algebraic
tools, to work with and simplify invariant solutions.

As defined in Section 1.1 a matrix X is positive semidefinite, if and only if vT X v
is nonnegative for every v ∈ V. This gives us the motivation to use operation of
G on V to define an action on the n × n-matrix X itself, which corresponds to
applying the same action on both vectors v simultaneously:

σ(X ) = PT
σ X Pσ.

Here again, if G acts by permuting the canonical basis of V, it acts directly on the
indices of X via

σ(X )i j = Xσ(i)σ( j).

Since vTσ(X )v = (PT
σ v)T X (Pσv) ≥ 0, this operation sends positive semidefinite

matrices to positive semidefinite matrices.

Remark 1.7. One can also set σ(X )i j = Xσ−1(i)σ−1( j) instead, depending on the
way one defines the action of products of group elements. We fix that (σπ)(x) =
σ(π(x)) in this thesis, but some authors prefer xσπ = (xσ)π, which changes the
order of execution of the two group elements (and thus turns V instead into a
right-G-module). In practice these two conventions do not have much influence
on the work in this thesis.

We say that the problem p⋆ (1.9) has symmetry G, if, given any feasible solu-
tion X and group element σ ∈ G, the matrix σ(X ) is again feasible with the same
objective value as X .
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Invariant Solutions. If an SDP has symmetry G, then we can restrict it to only
optimize over symmetric (or invariant) solutions. Indeed, given an optimal solu-
tion X ⋆ of (1.9), we can symmetrize it by averaging it over all elements of G:

RG(X
⋆) :=

1
|G|

∑
σ∈G

σ(X ⋆).

The resulting matrix is again feasible for the same SDP, with the same objective
value as X ⋆, and is invariant under action of any ρ ∈ G:

ρ(RG(X
⋆)) =

1
|G|

∑
σ∈G

ρ(σ(X ⋆)) =
1
|G|

∑
σ′∈G

σ′(X ⋆) =RG(X
⋆),

where we substituted the unique product ρ−1 ◦σ′ = σ in the second step. Thus,
the original SDP (1.9) has the same optimal value as the same SDP restricted to
invariant solutions:

p⋆ = inf 〈C , X 〉
s.t. 〈Ai , X 〉= bi for i = 1, . . . , m,

X ∈ Sn
+,

σ(X ) = X for all σ ∈ G. (1.10)

Since the action of G on matrices is linear, the additional constraints (1.10)
define a subspace of Sn+. If we determine a basis {B1, . . . , Bk} of this subspace, we
can reduce the number of variables in the SDP to obtain the equivalent SDP

p⋆ = inf
k∑

i=1

x i〈C , Bi〉

s.t.
k∑

i=1

x i〈Ai , Bi〉= bi for i = 1, . . . , m,

k∑
i=1

x iBi ∈ Sn
+,

x1, . . . , xk ∈ R,

which optimizes over just k variables x1, . . . , xk. If G acts on the rows and columns
of X via permutations, then the Bi are exactly the indicator matrices of orbits of
pairs of indices (also called orbitals), which have a 1 in position (i, j) if (i, j) lies
in the corresponding orbit, and 0 otherwise.
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Block-Diagonalization. We can now use Artin-Wedderburn theory [Art27;
Wed08] to block-diagonalize the space of invariant solutions (see also [Gij09]
for a full proof). Not only can we reduce the number of variables to the num-
ber of pairs of orbits of indices k (resp. the dimension of the space of invariant
matrices), but we can also replace the SDP constraints with multiple smaller ones.

The idea is here to transform the SDP according to a "symmetry-adapted ba-
sis" of V, which is chosen according to the decomposition of V into irreducible
submodules. This basis transformation block-diagonalizes the SDP; it turns all
the matrices Bi into block-matrices with blocks of sizes m1, . . . , mℓ. Often, but
not always, we have m1 + · · · + mℓ ≪ n, significantly reducing the size of the
optimization problem.

1.4 Overview of the Thesis

Chapter 2: Jordan Symmetry Reduction over the Doubly Nonnegative Cone.
We generalize the Jordan reduction method for symmetry reduction, which was
recently introduced by Parrilo and Permenter in [PP19], to optimization over
doubly-nonnegative matrices. These matrices are both positive semidefinite and
entry-wise nonnegative, and appear in various strong, but usually hard to com-
pute relaxations of combinatorial problems. While the reduction was originally
introduced for symmetric cones, we show that it can be applied to non-symmetric
cones as well. In this case, under small additional assumptions, we can show that
the optimal reduction can be found using a partition-space based algorithm. We
provide an implementation of this algorithm in form of a Julia-package, and use it
to compute the ϑ′-function of Erdős-Rényi graphs for larger instances than what
could be solved before [Kle+09b].

Chapter 3: Comparison and Reduction of Relaxations of the Quadratic As-
signment Problem. Here we focus on three relaxations of the quadratic assign-
ment problem, one based on eigenvalues, one on quadratic programming, and one
on optimization over the doubly-nonnegative cone. We prove that the bounds do
improve as one considers bounds which are harder to compute in practice. While
this was certainly expected, it was surprisingly tricky to prove formally. Finally,
we investigate the Jordan reduction method of Chapter 2 for the bound based on
doubly-nonnegative matrices, and apply it to benchmark instances contained in
QAPLib [BKR97].
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Chapter 4: Energy Minimization on a Toric Grid as a QAP. Given m charged
particles, how do we arrange them on a grid with n1×n2 possible positions, which
we then repeat periodically in all directions? We investigate a strong bound based
on optimization over the doubly nonnegative cone, and compare it with previous
bounds from the literature. The bound, while growing quickly in the size of the
grid, exhibits strong symmetries, which we exploit analytically using the Jordan
reduction method of Chapter 2. This reduces the bound to an equivalent bound
over O(n1n2) second order cones, which is significantly easier to compute. We
use this bound to prove (numerical) optimality of various periodic solutions, ex-
tending and complementing results by Bouman, Draisma and Van Leeuwaarden
[BDL13], and make progress towards a construction of a sharp bound for the
general ’checkerboard’ case where we fill exactly half of the grid points.

Chapter 5: Optimizing Hypergraph-Based Polynomials Modeling Job-Occu-
pancy in Queuing with Redundancy Scheduling. In this chapter we consider a
question posed in [CBL21] coming from redundancy scheduling in queuing theory.
Redundancy scheduling is based on the idea that sending the same job to multi-
ple distinct servers can be advantageous, if balanced against the risk of wasted
capacity. Here one wants to determine the optimal policy of choosing which sub-
set of servers one should send the copies of the job to, and it is conjectured that
the uniform probability distribution is optimal. This can be formulated as saying
that a certain highly symmetric polynomial attains its minimum at the normal-
ized all-one vector. While we do not manage to prove the general case, we prove
a similar result for a simplification of the family of polynomials by exploiting its
symmetries, as well as some special cases of the original problem.

Chapter 6: Four Different Views at Flag Algebras. In this chapter we give an
introduction to Razborov’s theory of flag algebras [Raz07], which can be used
to model and approximate problems coming from extremal combinatorics. We
show how three different bases of the algebra can be used interchangeably, each
with their own advantages and disadvantages, each of which can equivalently be
described by limits of polynomials in an increasing number of variables. While
Razborov introduced the basis describing densities of induced sub-flags, we show
that working with non-induced densities can be significantly easier. We use facts
coming from harmonic analysis of the binary hypercube to first introduce a third
basis, which we use to determine a recursive formulation of Sidorenko’s conjec-
ture, and later use in Chapter 8 for computational advantages.
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Chapter 7: Gatermann-Parrilo Reduction for Polynomial Optimization with
Sn Symmetry. In this background chapter we describe the symmetry reduction
method of Gatermann and Parrilo [GP04] for polynomial optimization. First, the
general theory is introduced for arbitrary groups, and then we give details for
special case where the symmetry is given by an action of the full symmetric group
Sn.

Chapter 8: Symmetry Reduced Flag SOS Hierarchies. In this chapter we fully
exploit the symmetries of the Lasserre hierarchy for flag sums-of-squares. The
translation of flags into (limits of) polynomials of [Ray+18], explained in Chap-
ter 6, reveals a family of highly symmetric polynomial optimization problems, to
which we then apply the reduction method described in Chapter 7. To make it
possible to decompose the high dimensional Sn-modules in practice, we needed
a novel algorithm to determine the decomposition of generalized permutation
modules into irreducible submodules. We investigate the thus obtained reduced
hierarchies, which are based on flags where vertices are grouped together instead
of explicitly labeled, and use them to compute outer approximations of profiles of
graphs and harmonic graphs. Finally, we give an example as to how flag algebras
can be generalized to obtain certificates for the leading term of subgraph densities
in degenerate cases, where the density of edges approaches zero as the number
of vertices grows.

Chapter 9: An Alternative Hierarchy Intertwining the Lasserre Hierarchy
for Binary Problems with Sn Symmetry. Here we investigate the hierarchy
Razborov introduces for flag algebras in [Raz07]. This hierarchy prioritizes graphs
with few vertices, in contrast to the Lasserre hierarchy prioritizing graphs with few
edges. We show how one can obtain and generalize this hierarchy as a trunca-
tion of a high level of the Lasserre hierarchy, and reduce the size of the hierarchy
further from there. Finally, we use facts from the representation theory of Sn to
compare the resulting hierarchy to the Lasserre hierarchy in both directions.
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1.5 Contributions to the Literature

This thesis is based on the following articles, while Chapters 6, 8 and 9 are based
on unpublished work:

[BK22b]Daniel Brosch and Etienne de Klerk. “Minimum energy configurations on
a toric lattice as a quadratic assignment problem”. In: Discrete Optimization
44 (May 2022), p. 100612. DOI: 10.1016/j.disopt.2020.100612

[BLS21] Daniel Brosch, Monique Laurent, and Andries Steenkamp. “Optimizing
Hypergraph-Based Polynomials Modeling Job-Occupancy in Queuing with
Redundancy Scheduling”. In: SIAM Journal on Optimization 31.3 (2021),
pp. 2227–2254. DOI: 10.1137/20m1369592

[BK22a]Daniel Brosch and Etienne de Klerk. “Jordan symmetry reduction for
conic optimization over the doubly nonnegative cone: theory and soft-
ware”. In: Optimization Methods and Software (2022), pp. 1–20. DOI: 10
.1080/10556788.2021.2022146

These articles are used in the chapters of this thesis as follows:

Chapter 2 Based on [BK22a, Sections 1-3, 5–7]
Chapter 3 Based on [BK22a, Section 4] and [BK22b, Sections 1-2]
Chapter 4 Improves on [BK22b, Sections 3-6] by adding Section 4.3
Chapter 5 Based on [BLS21]
Chapter 6 Unpublished work
Chapter 7 Background material
Chapter 8 Unpublished work
Chapter 9 Unpublished work
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https://doi.org/10.1137/20m1369592
https://doi.org/10.1080/10556788.2021.2022146
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2
Jordan Symmetry Reduction over the

Doubly Nonnegative Cone

This chapter studies symmetry reduction of semidefinite programs (SDPs) where
the matrix variable is also entry-wise nonnegative, i.e. symmetry reduction of
conic linear programming over the doubly nonnegative cone. Such problems ap-
pear naturally, among others, in the study of convex relaxations of combinatorial
problems. In particular, we are interested in such relaxations of the independence
number of a graph (in this chapter), and of the quadratic assignment problem (in
Chapter 3).

The independence number α of a graph G is the maximum number of nodes
of G we can choose, such that there is no edge between any of them. The Theta-
Prime function (ϑ′-function)[Sch79] is a semidefinite programming relaxation of
α, and as such gives an upper bound to it. Given the adjacency matrix A of G, the
function is defined by

ϑ′(G) = sup 〈J , X 〉 (2.1)

s.t. trace(X ) = 1,

〈A, X 〉= 0,

X ≥ 0,

21
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X ≽ 0.

The second family of problems we are interested in, which is investigated in
Chapter 3, are quadratic assignment problems, which are of the form

QAP(A, B) = min
ϕ∈Sn

n∑
i, j=1

ai j bϕ(i)ϕ( j), (2.2)

where A= (ai j) and B = (bi j) are symmetric n× n matrices, and Sn denotes the
symmetric group (i.e. all permutations) on n elements. Here we are interested
in the SDP relaxation of by Zhao et al. [Zha+98], as reformulated by Povh and
Rendl [PR09].

Symmetry reduction for SDP was first introduced by Schrijver in 1979 in
[Sch79]; see for example the chapter [Bac+11] by Bachoc, Gijswijt, Schrijver and
Vallentin for a review of later developments up to 2012. The specific case of SDP
relaxations of quadratic assignment problems was investigated by de Klerk and
Sotirov in [KS10; KS12].

Parrilo and Permenter [PP19] recently introduced a new — and more general
— form of symmetry reduction, called Jordan reduction. We will extend their
approach to the doubly-nonnegative cone. The advantage of the Jordan reduction
approach is that it requires no knowledge of group symmetries in the data, and
therefore is ideal for automated pre-processing. A drawback is that the initial
problem size must be small enough to perform basic linear algebra operations.
This is not always the case, e.g. when computing the ϑ′ function of Hamming
graphs [Sch79].

Outline and Contributions of this Chapter

In the next section, we recap relevant definitions and results on the Jordan re-
duction of Parrilo and Permenter [PP19]. In Section 2.2 we subsequently extend
this approach — which was formulated for symmetric cones — to the doubly non-
negative cone. This allows us to apply the method to the SDP relaxation of the
general QAP due to Zhao et al. [Zha+98] in Section 3.3, and to the ϑ′-function
of Erdős-Rényi -graphs in Section 2.3.1. Our extension of the Jordan reduction
method of Parrilo and Permenter [PP19] in Section 2.2 should lead to additional
applications in SDP relaxations of other combinatorial problems. Finally, in Sec-
tion 2.4, we describe a Julia software package implementing this method.
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This package complements the two existing packages QDimSum [TRR19] and
YALMIP [Lof09], of which the first exploits the symmetry of semidefinite pro-
gramming problems coming from quantum mechanics, and the second allows for
symmetry reduction of polynomial optimization problems with sign symmetries.

2.1 Preliminaries on Jordan Symmetry-Reduction

We will study conic optimization problems in the form

inf 〈C , X 〉 = inf 〈C , X 〉
s.t. 〈Ai , X 〉= bi for i ∈ [m] s.t. X ∈ X0 +L

X ∈ K X ∈ K,



 (2.3)

where [m] = {1, . . . , m}, K ⊆ V is a closed, convex cone in a real Hilbert space
V, X0 ∈ V satisfies 〈Ai , X0〉 = bi for all i ∈ [m], and L ⊆ V is the nullspace of
the linear operator A, where A(X ) = (〈Ai , X 〉)mi=1. The objective function is given
using the inner product 〈·, ·〉 of V, with which one defines the dual cone as:

K∗ := {Y ∈ V | 〈X , Y 〉 ≥ 0 ∀X ∈ K}.

In this chapter, we will mostly deal with the case where V is the space Sn of n× n
symmetric matrices equipped with the Euclidean inner product, and where K is
the cone of doubly nonnegative matrices.

2.1.1 Constraint Set Invariance

Parrilo and Permenter [PP19] introduced a set of three conditions a subspace has
to fulfill, such that it is possible to use it for symmetry reduction. Here we revisit
some of their results.

Definition 2.1. A projection is a linear transformation P : V → V which is idem-
potent, i.e., P2 = P.

Definition 2.2 (Definition 2.1. in [PP19]). A projection P : V → V fulfills the
Constraint Set Invariance Conditions (CSICs) for (K, X0 +L, C) if

(i) The projection is positive: P(K) ⊆ K,

(ii) P(X0 +L) ⊆ X0 +L,

(iii) P∗(C +L⊥) ⊆ C +L⊥,
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where P∗ is the adjoint of P, which satisfies 〈P(X ), Y 〉 = 〈X , P∗(Y )〉 for all X , Y ∈
V.

Note that this definition is symmetric going from primal to dual, since

P(K) ⊆ K ⇔ P∗(K∗) ⊆ K∗.

While it is clear that such a projection has to send feasible solutions to feasible
solutions in both the primal and dual program, it seems less obvious that it does
not change the objective value of feasible elements (Proposition 1.4.1 in [Per17]).
We give an alternative, more compact proof of this fact. For an X ∈ X0 + L we
have X − P(X ) ∈ L by (ii), and (iii) tells us C − P∗(C) ∈ L⊥. Thus,

〈C , X 〉 − 〈C , P(X )〉= 〈C , X − P(X )〉 − 〈C , P(X )− P(P(X ))〉
= 〈C , X − P(X )〉 − 〈P∗(C), X − P(X )〉
= 〈C − P∗(C), X − P(X )〉= 0.

These projections send feasible solutions to feasible solutions with the same
objective value, as the next result shows. (We include a proof for completeness.)

Proposition 2.3 (Proposition 1.4.1 in [Per17]). If a projection P : V → V fulfills
the CSICs, then

• P((X0 +L)∩K) ⊆ (X0 +L)∩K,

• P∗((C +L⊥)∩K∗) ⊆ (C +L⊥)∩K∗,
• For X ∈ X0 +L: 〈C , X 〉= 〈C , P(X )〉,
• For Y ∈ C +L⊥: 〈X0, Y 〉= 〈X0, P∗(Y )〉.

Proof from [Per17]. The first two properties are direct consequences of the def-
inition, and the remaining two are equivalent by its symmetry. Note that be-
cause of (ii) the difference X − P(X ) lies in L for any X ∈ X0 + L, and similarly
C − P∗(C) ∈ L⊥, which means that these vectors are orthogonal.

〈C , X 〉= 〈C − P∗(C) + P∗(C), X − P(X ) + P(X )〉
= 〈C − P∗(C), X − P(X )〉︸ ︷︷ ︸

=0

+〈C − P∗(C), P(X )〉

+ 〈P∗(C), X 〉+ 〈P∗(C), P(X )− P(X )〉︸ ︷︷ ︸
=0
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= 〈P∗(C)− P∗(C), X 〉+ 〈C , P(X )〉
= 〈C , P(X )〉

Here we used PP = P and 〈P(A), B〉= 〈A, P∗(B)〉 in the penultimate step.

To make things easier, we restrict ourselves to orthogonal projections PS to a
subspace S ⊆ V, which are exactly the projections of which the range and kernel
are orthogonal, or equivalently the projections which are self-adjoint, i.e., PS = P∗S .
If the projection PS fulfills the CSICs we call the subspace S admissible, following
[PP19]. In this case, the CSICs may be rewritten as follows, exploiting the fact
that orthogonal projections have the property that PA(B) ⊆ B⇔ PB(A) ⊆ A.

Theorem 2.4 (Theorem 5.2.1 in [Per17]). Consider the conic optimization problem
(2.3) and let S ⊆ V be the range of an orthogonal projection PS : V → V. Let
PL denote the orthogonal projection onto L, and define CL = PL(C) and X0,L⊥ =
PL⊥(X0). Then S is an admissible subspace if, and only if,

(a) CL, X0,L⊥ ∈ S,

(b) PL(S) ⊆ S,

(c) PS(K) ⊆ K.

Restricting the conic program to an admissible subspace S thus results in an-
other, potentially significantly smaller program, with the same optimal value.

inf 〈PS(C), X 〉 (2.4)

s.t. X ∈ PS(X0) +L∩ S,

X ∈ K∩ S.

Let {S1, . . . , Sk} be a basis of the admissible subspace S. We can rewrite the
reduced problem (2.4) as a conic optimization problem with just k scalar variables
x1,. . . , xk, by considering the original formulation (2.3).

inf
x∈Rk

k∑
i=1

x i〈PS(C), Si〉

s.t.
k∑

i=1

x i〈A j , Si〉= b j for j = 1, . . . , m, (2.5)

k∑
i=1

x iSi ∈ K,
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We can aggregate the linear constraints (2.5), reducing their number. Since L∩ S
is generally lower dimensional than S, many of the original constraints become
linearly dependent (in practice often identical) in the reduced optimization prob-
lem.

2.1.2 The Reduction for Jordan-Algebras

Next we review some results from [Per17] for the situation where the space V is a
Euclidean Jordan algebra J , that is a commutative algebra (with product denoted
by ‘•’) over R satisfying the Jordan identity

(x • y) • x2 = x • (y • x2),

and an inner product with 〈x • y, z〉 = 〈y, x • z〉. For every such algebra we can
define K as the cone of squares of J given by K = {x•x | x ∈ J }, which always is
a symmetric cone, i.e., a self-dual and homogenous convex cone (see for example
[FA94]).

The only example relevant for us is the case J = Sn, the symmetric n × n-
matrices with real entries, with product defined by

X • Y :=
1
2
(X Y + Y X ),

and the inner product the Euclidean (trace) inner product 〈X , Y 〉= trace(X Y ). It
is easy to see (e.g., from the spectral decomposition) that its cone of squares is
exactly the positive semidefinite cone Sn+.

Since the product of a Jordan algebra is commutative, we have

2x • y = x • y + y • x = (x + y)2 − x2 − y2,

which means that subspaces are closed under multiplication, if and only if they
include all squares. Similarly, isomorphisms between (Euclidean) Jordan algebras
are exactly the bijective linear maps satisfying φ(x2) = (φ(x))2.

Definition 2.5. A Jordan algebra J is called special, if it is isomorphic to the
algebra one gets from a real associative algebra by equipping the latter with the
product x • y = 1

2(x y + y x).

There is only a single (up to isomorphisms) simple Jordan algebra which is
not special, the algebra of Hermitian 3× 3-matrices of Octonions H3(O). The for
us relevant case J = Sn is special.
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Definition 2.6. A subspace (not necessarily a subalgebra) S of a Jordan algebra
is called unital, if there is an element e ∈ S such that e•a = a• e = a for all a ∈ S.

An important fact for us is that every Euclidean Jordan algebra is unital.

One main result of [Per17, Theorem 5.2.3] is an alternative description of
the CSICs when the ambient space is a special Euclidean Jordan algebra. In this
case the condition PS(K) ⊆ K in Theorem 2.4 — with K the cone of squares in J
— is equivalent to S being closed under taking squares, i.e. to S being a Jordan
subalgebra of J , if S is unital.

This gives an algorithm for finding the minimal admissible subspace, which is
defined as follows.

Definition 2.7. The unique minimal admissible subspace is

Smin :=
⋂

S is admissible

S.

As mentioned before, we may now formulate an algorithm for Smin.

Theorem 2.8 (Theorem 3.2 in [PP19]). If V = J is a Euclidean, special Jordan
algebra, and K its cone of squares, then Smin is the output of Algorithm 1.

Algorithm 1: Finding Smin

S← span{CL, X0,L⊥}
repeat

S← S + PL(S)
S← S + span{X 2 | X ∈ S}

until converged;

2.1.3 A Combinatorial Reduction Algorithm

The fourth step of Algorithm 1 is not linear, and hard to implement. But, con-
veniently, Permenter does introduce three combinatorial algorithms in his PhD
thesis ([Per17], Chapter 7) for the cone Sn+, which all find orthogonal 0/1-bases
for an optimal unital admissible subspace with certain additional properties. A
0/1-basis is a basis where each element has entries solely in {0, 1}. If the basis
is orthogonal, this implies that no two basis elements have nonzero entries in the
same position. Here we will only mention one of the algorithms, since the other
ones cannot give us better reductions for our special case.
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Partition Subspaces. The second combinatorial algorithm by Permenter [Per17]
finds an optimal unital partition subspace, which is a subspace with 0/1-basis,
the elements of which sum to the all-one matrix. We call these basis elements
characteristic matrices of the partition. We can describe the basis uniquely with a
partition of the coordinates of Rn×n, i.e. of [n]×[n], simply by having one part in
the partition for every basis element with ones in the corresponding coordinates.
For example the following spaces are partition spaces:

P1 =




a a b
a a b
b b c


 , P2 =




a b b
b a b
b b c


 , P3 = P1 ∧ P2 =




a b c
b a c
c c d


 ,

where P1∧P2 is the coarsest (i.e., the smallest dimensional) partition space refining
both P1 and P2. A partition space A refines the partition space B, if B is a subspace
of A.

For our purposes an important special case is a so-called Jordan configuration,
defined as follows.

Definition 2.9. A partition P of A× A, where A is a finite set, is called a Jordan
configuration, if its characteristic matrices BP satisfy

• X = X T for all X ∈ BP ,

• X Y + Y X ∈ span BP for all X , Y ∈ BP ,

• I ∈ span BP .

In words, a Jordan configuration is a basis of a unital partition space that is
also a Jordan subalgebra of Sn.

A more general example of a partition space, also of interest to us, is a so-called
coherent algebra (see e.g., [Cam03]).

Definition 2.10. A partition P of A×A, where A is a finite set, is called a coherent
configuration, if its characteristic matrices BP satisfy

• If X ∈ BP then also X T ∈ BP ,

• X Y ∈ span BP for all X , Y ∈ BP ,

• I ∈ span BP .
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Thus, a coherent configuration gives a 0/1 basis of a partition subspace that
is also a matrix ∗-algebra, namely the associated coherent algebra. Note that
the symmetric part of a coherent configuration is a Jordan configuration. It was
recently shown in [MRK20] that the converse is not true, there are infinite Jordan
configurations that are not the symmetric part of a coherent configuration.

To restrict the algorithm 1 to partition subspaces, we need more notation:
part(A) is the smallest partition space containing the matrix (or subspace) A, which
is simply the partition space given by the unique entries of A.

Algorithm 2: Partition algorithm ([Per17])
P ← part(CL)∧ part(X0,L⊥)
repeat

P ← P ∧ part(PL(P))
P ← P ∧ part(span{X 2 | X ∈ P})

until converged;

There are two basic ways to implement this algorithm: One can use polyno-
mial matrices, or randomization. For the first variant one introduces (commuting)
variables t i for each element of a basis B1, . . . , Bk of P, and then refines the par-
tition with part(PL(

∑k
i=1 t iBi)) = part(

∑k
i=1 t i PL(Bi)) and part((

∑k
i=1 t iBi)2). If

we for example take P2 from the example above, one has




ta tb tb

tb ta tb

tb tb tc




2

=




t2
a + 2t2

b 2ta tb + t2
b ta tb + t2

b + tb tc

2ta tb + t2
b t2

a + 2t2
b ta tb + t2

b + tb tc

ta tb + t2
b + tb tc ta tb + t2

b + tb tc 2t2
b + t2

c


 ,

of which the unique polynomials induce the partition P3.
The second variant refines the partition with a random element in the partition

space after projecting it to L and after squaring it. While one has to be more
careful about rounding errors here, it is both easier to implement and much faster.

Remark 2.11. We note that the first variant of the partition algorithm presented
here is very similar to the Weisfeiler-Leman (WL) algorithm [LW68], that finds the
coarsest coherent configuration refining a given partition of [n]× [n]. The only
difference is that the WL algorithm uses non-commuting variables t i , as opposed
to commuting ones; see [Bab+97] on details of the implementation of the WL
algorithm.
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Algorithm 3: Partition algorithm, randomized ([Per17])
P ← part(CL)∧ part(X0,L⊥)
repeat

X ← random element of P
P ← P ∧ part(PL(X ))
P ← P ∧ part(X 2)

until converged;

2.2 Extension to the Doubly Nonnegative Cone

We will now fix the cone K in (2.3) to be the doubly nonnegative cone Dn :=
Sn+ ∩Rn×n

+ . Since we will refer to nonnegative, symmetric matrices frequently, we
also introduce the notation N n = Sn ∩ Rn×n

+ . Even though Dn is not a cone of
squares in a Euclidean Jordan algebra, one may readily adapt some results of the
last section to this setting.

We start with an elementary, but important observation.

Proposition 2.12. Assume that a subspace S ⊂ Sn has a basis of nonnegative matri-
ces with pairwise disjoint supports. Then the orthogonal projection PS onto S satisfies
PS(Dn) ⊆ Dn if it satisfies PS(Sn+) ⊆ Sn+.

Proof. If S has a basis of nonnegative matrices with disjoint supports, then it has
an orthonormal basis with this property, say Ai (i ∈ [d]), and the orthogonal
projection is of the form

PS(X ) =
d∑

i=1

〈Ai , X 〉Ai .

Since the Euclidean inner product of two nonnegative matrices is nonnegative,
we have

PS(N n) ⊆N n,

and, since Dn ⊂ Sn+, and PS(Sn+) ⊆ Sn+ by assumption,

PS(Dn) ⊆ Sn+ ∩N n = Dn.

If we consider partition subspaces, we may therefore use results on admissible
partition subspaces for the case K = Sn+, as follows.
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Corollary 2.13. Consider a conic optimization problem of the form (2.3), with V =
Sn, and K = Sn+, and let S be an admissible partition subspace for this problem.
Then, S is also an admissible partition subspace for the related problem where we
replace K = Sn+ by K = Dn.

The important practical implication is that we may use Algorithm 3 to find an
admissible Jordan configuration for conic optimization problems on the cone Dn

(but we do not know if it is optimal in general). In the next section we will do
precisely this for an SDP relaxation of the quadratic assignment problem.

It is instructive though to ask how restrictive it is to only consider admissible
partition subspaces. In what follows, we show that the partition subspace struc-
ture is actually imposed by some relatively weak assumptions.

To this end, we first recall a result on nonnegative projection matrices; recall
that a matrix P is a nonnegative projection matrix if P2 = P and P maps non-
negative vectors to nonnegative vectors. If, in addition, P = PT , then it is called
a nonnegative, orthogonal projection matrix. The following characterization of
nonnegative projection matrices is taken from [Gal04, Theorem 2.38], but origi-
nally due to Belitskii and Lyubich (cf. [BL88, p. 108]). Since there is a typo in the
proof of the proposition in [BL88], we include a detailed fixed proof in Appendix
A.

Proposition 2.14 (Theorem 2.1.11 in [BL88]). The general form of a nonnegative
projection matrix is

P = (A+ B)C T (2.6)

where r = rank(P), A, B, C ∈ Rn×r
+ , AT A= I , C T A= I , BT A= 0 and BT C = 0.

As a consequence, a nonnegative, orthogonal projection matrix has the fol-
lowing structure.

Corollary 2.15. Any n× n symmetric nonnegative orthogonal projection matrix P
with r-dimensional range takes the form P = CC T for some C ∈ Rn×r

+ such that
C T C = I . In particular, the columns of C form a nonnegative, orthonormal basis of
the range of P, and these basis vectors therefore have disjoint supports.

Proof. With reference to (2.6), one has

P = PT =⇒ PA= PT A⇐⇒ (A+ B)C T A= C(AT + BT )A⇐⇒ A+ B = C .

Thus, by (2.6) one has P = CC T , and C T C = I . Since nonnegative vectors can
only be orthogonal if they have disjoint supports, the columns of C have this
property.
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Finally, recall that a projection matrix is symmetric if and only if it corresponds
to an orthogonal projection.

One may easily extend this to orthogonal projection operators, as follows.

Proposition 2.16. Assume that a given orthogonal projection PS with range S ⊆ Sn
satisfies PS(N n) ⊆N n. Then:

1. S has a basis of nonnegative matrices with disjoint supports.

2. If, in addition, S contains the all-ones matrix J, then it is a partition subspace.

3. If, in addition to the condition in item 2), PS(Sn+) ⊆ Sn+ and S contains the
identity matrix, then S is a Jordan configuration.

Proof. Since PS is self-adjoint, we may write it as a symmetric matrix, say MPS
,

with respect to the standard orthonormal basis of Sn. For an X ∈ Sn, we define
the vector svec(X ) ∈ R 1

2 n(n+1) as

svec(X ) =
�
X11,
p

2X21, . . . ,
p

2Xn1, X22,
p

2X32, . . . ,
p

2Xn2, . . . , Xnn

�T
.

Thus, svec(X ) gives the coordinates of X in the standard orthonormal basis of Sn.
One therefore has

svec(PS(X )) = MPS
· svec(X ) ∀X ∈ Sn.

Choosing svec(X ) as the standard unit vectors in R
1
2 n(n+1) makes it clear that

MPS
∈ N

1
2 n(n+1). Thus, the first claim now follows from Corollary 2.15, namely

that S has a basis of nonnegative matrices with pairwise disjoint supports. If S
contains the all-ones matrix J , then it must hold that these basis matrices are 0/1,
proving the second claim.

Finally, to prove the third claim, we recall that S unital and PS(Sn+) ⊆ Sn+
implies that S is a Euclidean Jordan algebra, as mentioned in Section 2.1.2. Since
it has a 0/1 basis, it is in fact a Jordan configuration if we also assume I ∈ S.

The last proposition shows that partition subspaces are closely related to non-
negative projections.

The question remains if there exists an orthogonal projection PS : Sn → Sn
with range S ⊆ Sn that satisfies PS(Dn) ⊆ Dn, but not PS(N n) ⊆N n.
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Proposition 2.17. Let PS be an orthogonal projection with range S that satisfies
PS(Dn) ⊆ Dn. If I ∈ S, then PS(N n) ⊆N n.

Proof. Let X ∈ N n. Since X ∈ (Dn)∗ = N n + Sn+ and PS((Dn)∗) ⊆ (Dn)∗, we
know that the diagonal entries of PS(X ) are nonnegative. To see the same for the
off-diagonal entries, let r be the spectral radius of X . Then X + r I ∈ Dn, which
implies that PS(X+ r I) ∈ Dn has nonnegative off-diagonal entries. Since PS(I) = I
we have PS(X ) = PS(X + r I)− r I , thus showing that PS(X ) has nonnegative off-
diagonal entries and therefore PS(X ) ∈N n.

Hence, all admissible subspaces that contain J and I are automatically Jordan
configurations for conic problems over the doubly nonnegative cone, if they are
Sn+-positive, by the last two propositions. It is still an open problem whether Dn-
positive implies Sn+-positive.

Remark 2.18. The additional restriction to 0/1 bases is not w.l.o.g., for example
consider the subspace spanned by a single idempotent matrix A≥ 0 with multiple
different entries. This subspace is closed under squaring (λA)2 = λ2A, and it has
a unit e = A. Such an A exists, e.g.

A=
1
2

�
1− 1p

2
1p
2

1p
2

1+ 1p
2

�
.

So S = span{A} is a unital Jordan algebra, with basis {A}. Since A ≥ 0, an
Sn+-positive projection to S is Dn-positive, but S does not have a 0/1-basis. Since
coherent algebras are Jordan algebras, this shows that a restriction to the subspace
having a 0/1-basis or to the subspace being a coherent algebra is a truly stronger
condition than is needed by Theorem 2.4.

2.3 Reducing the ϑ′-Function

The ϑ′-function of a graph G = (V, E), as given in (2.1), is a doubly nonnegative
semidefinite program of size n := |V |. Here we can say a bit less about admissible
subspaces in the general case. As seen in Theorem 2.4, every admissible subspace
needs to contain CL and X0,L⊥ . Here it is straightforward to see that CL is exactly
the adjacency matrix of the complementary graph G, and X0,L⊥ =

1
n In. Thus,

we know at least that S contains the identity. This implies that every admissible
subspace for the ϑ′-function has a basis of nonnegative matrices with disjoint
supports, by Propositions 2.16 and 2.17.
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But an admissible subspace here does not necessarily need to contain the all-
one matrix Jn. One obtains an easy example by G = ([n], {{i, j} if i > m or j > m}
for n > m > 0. It is easy to check that an admissible subspace for this problem is
of the form 



a b b
b a b
b b a

c
c

c
c




,

here shown for n= 7 and m= 3. While this case is not too interesting, this shows
that the Jordan reduction can be better than a group-symmetry reduction, which
would result in the five-dimensional subspace given by




a b b d d d d
b a b d d d d
b b a d d d d
d d d c e e e
d d d e c e e
d d d e e c e
d d d e e e c




.

Do note though that in this case the three additional variables will be eliminated
by the constraints of the SDP soon after.

2.3.1 The ϑ′-Function of Erdős-Rényi Graphs

Let q be an odd prime, and let V = F3
q be a three-dimensional vector space over

the finite field of order q. The set of one dimensional subspaces, i.e. the projective
plane, of V is denoted by PG(2, q). There are q2 + q + 1 such subspaces, which
form the vertices of the Erdős-Rényi graph ER(q). Two vertices are adjacent if
they are distinct and orthogonal, i.e., for two representing vectors x and y we
have x T y = 0. The interested reader is referred to the papers [GN08; Kle+09a],
and the references therein, for more details on these graphs.

We are interested in the size of a maximum stable set of these graphs, specifi-
cally upper bounds for this value.
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In [GN08] the authors derive the upper bound

p
q+

r
q+ 4(q+ 1) q+pq+1

q2+q+1

2 q+pq+1
q2+q+1

, (2.7)

which was shown to be at most as good as the ϑ′-function in [Kle+09a]. The
bound (2.7) is obtained from a generalization of the Hoffman-Delsarte bound
[Del73] for nearly regular graphs, where one adds loops to a graph to make it
regular.

The ϑ′-function of ER(q) is a doubly nonnegative semidefinite program of size
q2 + q + 1. Without further reductions one can practically solve this for up to
q = 17. In [Kle+09a] the authors reduced the problem size enough to solve it for
up to q = 31, and in this chapter we managed to solve it for up to q = 97.

We applied the reduction algorithm, numerically block-diagonalized (more on
that next section) and solved the resulting problems for all primes from q = 3 to
97, as shown in Tables 2.1 and 2.2. Interestingly, the reduced block sizes always
are one block of size 3× 3, and ⌈ q

2⌉ blocks of size 2× 2, i.e., the problem nearly
reduces to a second order cone problem. By comparison, the problem was reduced
to SDPs of matrix size 2q+ 11 in [Kle+09a].

2.4 The Julia Package

We provide a package "SDPSymmetryReduction.jl" as part of the Julia registry,
with full source code available at https://github.com/DanielBrosch/
SDPSymmetryReduction.jl. We provide functions to both find an optimal
admissible partition subspace for a given SDP, and to block-diagonalize it after.

To enter a semidefinite program one has to provide (potentially sparse) vec-
tors and matrices C ∈ Rn2

, A ∈ Rm×n2
and b ∈ Rm as in (2.3) (vectorizing the

variable X ). We provide examples for how one can approach this for both the
ϑ′-function of a given graph and for the SDP-bound (3.1). Since we return a
partition based symmetry reduction, it is not necessary to give entry-wise non-
negativity constraints, as long as one remembers to use nonnegative variables in
the final, reduced SDP (see also the example in 2.6).

Determining an Admissible Subspace. The function ‘admPartSubspace‘ deter-
mines an optimal admissible partition subspace for the problem, by Algorithm 3.

https://github.com/DanielBrosch/SDPSymmetryReduction.jl
https://github.com/DanielBrosch/SDPSymmetryReduction.jl
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q q2 + q+ 1 Jordan red. (s) block-diag. (s) blocks (size × mult.)

3 13 0.001 0.001 3× 1, 2× 2
5 31 0.002 0.006 3× 1, 2× 3
7 57 0.007 0.011 3× 1, 2× 4
11 133 0.067 0.033 3× 1, 2× 6
13 183 0.092 0.051 3× 1, 2× 7
17 307 0.241 0.170 3× 1, 2× 9
19 381 0.421 0.303 3× 1, 2× 10
23 553 1.019 0.723 3× 1, 2× 12
29 871 2.455 2.392 3× 1, 2× 15
31 993 3.398 3.664 3× 1, 2× 16
37 1407 7.745 9.068 3× 1, 2× 19
41 1723 13.039 16.358 3× 1, 2× 21
43 1893 14.533 21.508 3× 1, 2× 22
47 2257 19.910 36.711 3× 1, 2× 24
53 2863 33.271 72.052 3× 1, 2× 27
59 3541 51.463 140.119 3× 1, 2× 30
61 3783 54.714 166.267 3× 1, 2× 31
67 4557 78.579 332.438 3× 1, 2× 34
71 5113 115.303 487.162 3× 1, 2× 36
73 5403 118.058 545.498 3× 1, 2× 37
79 6321 179.084 886.065 3× 1, 2× 40
83 6973 215.983 1 336.901 3× 1, 2× 42
89 8011 293.947 1 931.723 3× 1, 2× 45
97 9507 434.341 2 912.840 3× 1, 2× 49

Table 2.1: Results of the numerical symmetry reduction of the Theta’ function of
Erdős-Rényi graphs.

This is done using a randomized Jordan-reduction algorithm, and it returns a Jor-
dan algebra. SDPs can be restricted to such a subspace without changing their
optimal value.

Given C , A and b, admPartSubspace(C , a, b) returns a Partition P with P.n giv-
ing the number of parts of the partition, and P.P returning an integer valued matrix
with entries 1, . . . , n defining the partition.

For example, let C , A and b define the ϑ′-function of the cycle graph C5. If we
label the vertices such that its adjacency matrix is




0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0




,
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q solve time (s) ϑ′(ER(q)) EV bound (2.7)

3 0.002 5.000 5.560
5 0.003 10.067 10.556
7 0.002 15.743 16.727
11 0.003 31.088 32.051
13 0.003 40.509 41.025
17 0.004 60.221 61.291
19 0.004 71.301 72.493
23 0.004 96.240 96.858
29 0.006 136.978 137.910
31 0.007 151.702 152.707
37 0.007 199.269 200.203
41 0.009 233.390 234.312
43 0.009 250.917 252.063
47 0.011 287.772 288.907
53 0.013 346.626 347.388
59 0.015 408.548 409.534
61 0.015 430.219 431.030
67 0.020 496.438 497.775
71 0.019 543.128 544.095
73 0.021 566.915 567.787
79 0.945 639.644 640.932
83 1.111 690.583 691.375
89 0.115 768.469 769.481
97 0.108 877.075 878.027

Table 2.2: The resulting bounds for the stable set number of Erdős-Rényi graphs.

then calling admPartSubspace(C , a, b) returns the partition P with P.n= 3 and

P.P =




1 2 3 3 2
2 1 2 3 3
3 2 1 2 3
3 3 2 1 2
2 3 3 2 1




,

i.e., we can restrict the feasible set to the three-dimensional subspace given by P.

Block-Diagonalizing a Jordan-Algebra. The function ‘blockDiagonalize‘ deter-
mines a block-diagonalization of a (Jordan)-algebra given by a partition P using
a randomized algorithm. It implements the Algorithm from [Mur+10] (see also
[KDP11]). To our knowledge this is the first implementation available to the pub-
lic.

Remark 2.19. Every matrix ∗-algebra over C is isomorphic to a direct sum of
full matrix ∗-algebras over C. But the situation over the reals has more cases (as
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detailed in [MM10]); this is the underlying property of block-diagonalization over
the reals. We currently offer two versions of the block-diagonalization function:
One to attempt to block-diagonalize it fully over the reals (which does fail in the
cases mentioned in [MM10]), and one over the complex numbers, which never
fails (at the cost of potentially being non-optimal when working with real valued
SDPs).

Remark 2.20. The algorithm only provides an approximate, rational block-
diagonalization. This may lead to numerical issues in some cases, potentially
requiring very high precision computations. In some cases it may be more stable
numerically to only compute the Jordan-algebra, reducing the number of vari-
ables, and skipping the block-diagonalization. However, we did not run into such
a case in practice in the examples considered here and in Chapter 3.

blockDiagonalize(P) returns (a rational approximation of) a real block-
diagonalization blkd, if it exists, otherwise ‘nothing‘.

• blkd.blkSizes returns an integer array of the sizes of the blocks.

• blkd.blks returns an array of length P.n containing arrays of (real) matrices
of sizes blkd.blkSizes. I.e., blkd.blks[i] is the image of the basis element
given by the 0/1-matrix with a one in the positions where P.P is i.

blockDiagonalize(P; complex = t rue) returns the same, but with complex
valued matrices, and should be used if no real block-diagonalization was found.
To use the complex matrices in practice, remember that a Hermitian matrix Y is
positive semidefinite if and only if

�
real(Y ) −imag(Y )
imag(Y ) real(Y )

�

is positive semidefinite.
Continuing the example of reducing ϑ′(C5), blockDiagonalize(P) here returns

a block-diagonalization blkd with blkd.blkSizes = [1,1, 1] (i.e., three blocks of
size 1× 1), and the image of the basis is

blkd.blks ≈ [[1,1, 1],

[−1.618, 0.618,2],

[0.618,−1.618,2]].
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This means that



a b c c b
b a b c c
c b a b c
c c b a b
b c c b a



≽ 0⇔





a− 1.618b+ 0.618c ≥ 0,
a+ 0.618b− 1.618≥ 0,
a+ 2b+ 2c ≥ 0,

,

which allows us to rewrite ϑ′(C5) as a linear program in the three variables a, b, c.

2.5 Concluding Remarks

We have extended the Jordan symmetry reduction method to the doubly non-
negative cone, and showed that for this cone that the restriction to admissible
subspaces that are partition-spaces is not a strong requirement in Section 2.2. In
Section 2.3 we have seen that the optimal admissible subspace of the ϑ′-function
can always be given by a nonnegative basis with disjoint supports, and applied this
reduction to Erdős-Rényi -graph instances. Finally, we describe the Julia package
"SDPSymmetryReduction.jl", available at https://github.com/DanielBro
sch/SDPSymmetryReduction.jl, implementing the described algorithms in
Section 2.4. In Appendix 2.6 we give a complete code example as to how one can
use this package to calculate ϑ′(ER(q)).

It may be possible to combine the Jordan symmetry reduction method with
facial reduction, similar to what the authors do in [HSW19]. There a significant
speed-up in computations was observed when solving the symmetry and facial
reduced doubly nonnegative SDPs with a first order method (more specifically, an
alternating direction method of multipliers). In future work similar ideas for the
Jordan reduction method may be worth exploring.

2.6 Example Use of the Software Package

In this appendix we give a complete example how to compute the ϑ′-function of
ER(q), where q = 31, using block-diagonalization, and solving the reduced SDP
with JuMP and Mosek.

using SDPSymmetryReduction
using LinearAlgebra , SparseArrays
using JuMP , MosekTools

https://github.com/DanielBrosch/SDPSymmetryReduction.jl
https://github.com/DanielBrosch/SDPSymmetryReduction.jl
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## Calculating the Theta ’-function of Erdos -Renyi graphs
q = 31

# Generating the adjacency matrix of ER(q)
PG2q = vcat ([[0, 0, 1]],

[[0, 1, b] for b = 0:q-1],
[[1, a, b] for a = 0:q-1 for b = 0:q-1])

Adj = [x’ * y % q == 0 for x in PG2q , y in PG2q]
Adj[diagind(Adj)] .= 0

# Theta ’ SDP
N = length(PG2q) # = q^2+q+1
C = ones(N^2)
A = hcat(vec(Adj), vec(Matrix(I, N, N)))’
b = [0, 1]

# Find the optimal admissible subspace (= Jordan algebra)
P = admPartSubspace(C, A, b, true)

# Block -diagonalize the algebra
blkD = blockDiagonalize(P, true)

# Calculate the coefficients of the new SDP
PMat = hcat([ sparse(vec(P.P .== i)) for i = 1:P.n]...)
newA = A * PMat
newB = b
newC = C’ * PMat

# Solve with optimizer of choice
m = Model(Mosek.Optimizer)

# Initialize variables corresponding to the parts of
# the partition P. They are nonnegative since the
# original SDP -matrices are entry -wise nonnegative.
x = @variable(m, x[1:P.n] >= 0)

@constraint(m, newA * x .== newB)
@objective(m, Max , newC * x)

# Setup the block -diagonalized PSD -constraints
psdBlocks = sum(blkD.blks[i] .* x[i] for i = 1:P.n)
for blk in psdBlocks

if size(blk , 1) > 1
@constraint(m, blk in PSDCone ())

else
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@constraint(m, blk .>= 0)
end

end

optimize !(m)

@show termination_status(m)
@show value(newC * x)
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3
Comparison and Reduction of Relaxations

of the Quadratic Assignment Problem

A quadratic assignment problem in Koopmans-Beckmann form is given by three
matrices A= (ai j), B = (bi j), C = (ci j) ∈ Rn×n, and can be written as

QAP(A, B, C) = min
ϕ∈Sn

 
n∑

i, j=1

ai j bϕ(i)ϕ( j) +
n∑

i=1

ciϕ(i)

!
,

where Sn is the set of all permutations of n elements. If C = 0, then we shorten the
notation to QAP(A, B), and if all data matrices are symmetric, we call the quadratic
assignment problem symmetric.

This is a quadratic optimization problem, which can be seen if we write the
objective using permutation matrices:

min
X∈Πn
〈A, X BX T 〉+ 〈C , X 〉,

where 〈X , Y 〉 = tr(X T Y ) is the trace inner product, and Πn the set of n× n per-
mutation matrices.

Because of the very general form of the problem, it is not surprising that it
is NP-complete (see for example §7.1.7 in [BDM12]), which motivates the search

43
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for good approximations and bounds; see, e.g., the survey [Loi+07] and the book
[BDM12] for an overview. In Section 3.1 we describe three such bounds, in both
increasing complexity and strength. The first is a projected eigenvalue bound,
which was first introduced in [HRW92], which, similar to the eigenvalue bound
of [FBR87], is based on the eigenvalues of the data matrices. The second bound, a
convex quadratic programming bound, then improves this bound by adding a con-
vex quadratic term to the objective, as introduced in [AB01a] (see also [AB01b;
Ans+02]). The third bound, which was introduced in [Zha+98] and later re-
formulated in [PR09], is a semidefinite programming relaxation of the quadratic
assignment problem. As it is the most complex computationally, it is natural to
expect it to be stronger than the two other bounds, which we prove in our first
main result Theorem 3.3.

In Section 3.3 we then apply the Jordan reduction method, which we inves-
tigated in Chapter 2, to the strongest of the three bounds. Finally, we apply this
reduction algorithm to the benchmark instances of QAPLib in Section 3.3.1.

3.1 Three Bounds for the QAP

In this section we will consider three different bounds for QAPs, of increasing
computational complexity. In Section 3.2 we compare the different bounds, and
we reduce the strongest of them in Section 3.3. Later, in Chapter 4 we apply the
bounds to a problem coming from discrete energy minimization.

3.1.1 Projected Eigenvalue Bound

The first bound relevant for this chapter is the projected eigenvalue bound, which
was introduced in [HRW92], a stronger variant of the eigenvalue bound for QAP
(see [FBR87]), which is based on projecting the matrices into a space the same
dimension as the span of the permutation matrices.

We denote the all-ones vector with e, and the elements of the canonical basis
as ei .

Proposition 3.1 ([HRW90],[HRW92], cf. Prop. 7.23 in [BDM12]). Let V be the
n×(n−1)matrix, of which the columns form an orthonormal basis of the orthogonal
complement of the all-ones vector e. Define Ã := V T AV , B̃ := V T BV , and collect their
eigenvalues in the vectors λÃ and µB̃ respectively. Set D := 2

nAeeT B. The projected
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eigenvalue bound for the symmetric QAP(A, B) is given by

PB(A, B) := 〈λÃ,µB̃〉− +min
ϕ∈Sn

n∑
i=1

diϕ(i) −
(eT Ae)(eT Be)

n2
,

where 〈x , y〉− =minϕ∈Sn

∑n
i=1 xϕ(i) yi . One then has PB(A, B)≤QAP(A, B).

One may calculate PB(A, B) by sorting λÃ and µB̃ to compute 〈λÃ,µB̃〉− (see
Proposition 5.8 in [BDM12]) and solving one linear assignment problem

min
ϕ∈Sn

n∑
i=1

diϕ(i).

3.1.2 Quadratic Programming Bound

The second bound we consider is a convex quadratic programming (CQP) bound,
introduced in [AB01a], which is based on the same projection as the bound in
Proposition 3.1. We will see that it is at least as good as the projected eigenvalue
bound. Here we relax X ∈ Πn to X e = X T e = e and X ≥ 0, i.e., we optimize over
doubly stochastic matrices instead of permutation matrices.

In the following In and Jn denote the identity and all-ones matrices respec-
tively of size n×n, Ei j denotes the n×n matrix with a single one at position (i, j),
and ⊗ the Kronecker product.

Hadley, Rendl and Wolkowicz ([HRW90],[HRW92]) observed that every dou-
bly stochastic matrix can be written as

X =
1
n

eeT + V Y V T ,

where V is the n×(n−1)matrix of which the columns form an orthonormal basis of
the orthogonal complement of e, as before. We have V T V = In−1, V V T = In− 1

n eeT

and Y = V T X V . As before, we set Ã = V T AV and B̃ = V T BV , and collect their
eigenvalues in the vectors λÃ and µB̃.

In Section 3 of [AB01a], Anstreicher and Brixius introduce the following CQP
bound for quadratic assignment problems.

Proposition 3.2 ([AB01a]). Let A and B be symmetric matrices of size n× n, and
define the pair (S∗, T ∗) to be any optimal solution of the problem

max
�
tr(S + T ): B̃ ⊗ Ã− In ⊗ S − T ⊗ In ≽ 0

	
,
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so the matrix Q̂ := B̃ ⊗ Ã − In ⊗ S∗ − T ∗ ⊗ In ≽ 0 is positive semidefinite, and
tr(S∗ + T ∗) = 〈λÃ,µB̃〉−. Then we get a convex quadratic bound for QAP(A, B),
which is at least as good as PB(A, B), by

QPB(A, B) :=min y T Q̂ y + 〈λÃ,µB̃〉− +
2
n

tr (BJnAX )− (e
T Ae)(eT Be)

n2
,

s.t. X ≥ 0 is doubly stochastic,

X =
1
n

eeT + V Y V T ,

y = vec(Y ).

In other words, one always has PB(A, B)≤QPB(A, B).

One may compute QPB(A, B) by solving a linear assignment problem to ob-
tain Q̂, and then solving a CQP in O(n2) variables. For details, see Section 4 in
[AB01a].

3.1.3 SDP Bound

The following semidefinite programming relaxation for QAP(A, B, C) was stud-
ied by Povh and Rendl [PR09], which is equivalent to an earlier bound by Zhao,
Karisch, Rendl and Wolkowicz [Zha+98]:

SDPQAP(A, B, C) :=min 〈B ⊗ A+Diag(vec(C)), Y 〉 (3.1)

s.t. 〈In ⊗ E j j , Y 〉= 1 for j = 1, . . . , n,

〈E j j ⊗ In, Y 〉= 1 for j = 1, . . . , n,

〈In ⊗ (Jn − In) + (Jn − In)⊗ In, Y 〉= 0,

〈Jn2 , Y 〉= n2,

Y ∈ Sn2

+ ∩Rn2×n2

≥0 ,

where A, B, C ∈ Rn×n and A and B are symmetric, and Sn+ denotes the cone of
positive semidefinite matrices of size n× n. We write SDPQAP(A, B) if C = 0. In
general, if the dimension of matrices is clear, we write X ≽ 0 instead of X ∈ Sn+ to
denote positive semidefinite matrices.

The bound SDPQAP(A, B, C) is expensive to compute, as it involves an SDP
with doubly nonnegative matrix variables of order n2 × n2.
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3.2 Comparison of the Bounds

The three bounds PB(A, B), QPB(A, B) and SDPQAP(A, B) increase in computa-
tional complexity, hence, we would expect that the bounds do get better accord-
ingly. As it turns out, we can show the expected order of the bound quality.

Theorem 3.3. For symmetric matrices A and B we have

PB(A, B)≤QPB(A, B)≤ SDPQAP(A, B)≤QAP(A, B).

Proving this bound is quite technical. The outermost inequalities are known,
hence, we only need to show the inequality in the middle. Instead of doing this
directly, we first introduce another SDP-based bound, which lies in between the
bounds QPB and SDPQAP. This bound, which we will call SDPPB, is based on
the same projection used for PB and QPB.

Again we start with the observation that for every doubly stochastic n × n-
matrix X we can always find an n− 1× n− 1-matrix Y with

X =
1
n

eeT + V Y V T ,

where V= (v1| . . . |vn−1) is the n × (n − 1) matrix of which the columns form an
orthonormal basis of the orthogonal complement of the all-one vector e. Set y =
vec(Y ), the vector we obtain by gluing the columns of Y together. The idea of this
bound is now to relax U = y y T to be a positive semidefinite matrix with certain
constraints, and to relax y = vec(Y ) to a variable u. Since y y T − y y T = 0 ≽ 0,
we add the constraint that U − uuT ≽ 0.

We can rewrite the objective function of the QAP at X = 1
n eeT + V Y V T as:

tr(AX BX T ) = tr

�
A
�

1
n

eeT + V Y V T
�

B
�

1
n

eeT + V Y V T
�T�

= tr
�

1
n2

AeeT BeeT
�
+ tr

�
1
n

AeeT BV Y T V T
�

+ tr
�

1
n

AV Y V T BeeT
�
+ tr

�
1
n

AV Y V T BV Y T V T
�

= tr
�
ÃY B̃Y T

�
+

2
n

tr
�
BJnAV Y V T

�
+

1
n2
(eT Ae)(eT Be)

= 〈B̃ ⊗ Ã, y y T 〉+ 2
n

vec
�
V T BJnAV

�T
y +

1
n2
(eT Ae)(eT Be).

Thus, we can write it as linear function of y y T and y , which we relax to U and u
respectively. To make this bound at least as good as the convex quadratic bound
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QPB(A, B), we have to add more conditions, which follow from U = y y T =
vec(V T X V )vec(V T X V )T . We have, for all 1≤ i, j ≤ n− 1, that

〈I ⊗ Ei j , U〉= tr
�
Ei jV

T X V IV T X T V
�

= tr
�

v j v
T
i X

�
I − 1

n
J
�

X T
�

= tr
�
v j v

T
i

�− 1
n

tr
�
v j v

T
i J
�

= tr
�
vT

i v j

�− 1
n

tr
�
eT v j v

T
i e
�
= δi j ,

and analogously we can show that 〈Ei j ⊗ I , U〉= δi j as well. Here δi j denotes the
Kronecker-Delta, which is one if i = j, and zero otherwise. Finally, the property
that X = 1

n eeT + V Y V T is nonnegative is equivalent to (V ⊗ V )y ≥ − 1
n e⊗ e.

Proposition 3.4. With Ã, B̃ and V as defined in Proposition 3.1, we obtain a bound
for QAP(A, B) by:

SDPPB(A, B) :=min 〈B̃ ⊗ Ã, U〉+ 2
n

vec(V T BJAV )T u+
1
n2
(eT Ae)(eT Be) (3.2)

s.t.

�
1 uT

u U

�
≽ 0,

〈Ei j ⊗ In−1, U〉= δi j ∀i, j = 1, . . . , n− 1,

〈In−1 ⊗ Ei j , U〉= δi j ∀i, j = 1, . . . , n− 1,

(V ⊗ V )u≥ −1
n

e⊗ e.

Lemma 3.5.
SDPPB(A, B)≥QPB(A, B).

Proof. Let (U , u) be an optimal solution of SDPPB(A, B). Then we construct a
feasible solution for QPB(A, B) by setting y = u, since (V ⊗ V )u+ 1

n eeT ≥ 0, and
thus X = 1

n eeT + V Y V T ≥ 0 for vec(Y ) = y . The matrix X is doubly stochastic,
since (e⊗ ei)T (V ⊗V )u= (eT V ⊗ eT

i V )u= 0 and (ei ⊗ e)T (V ⊗V )u= 0, so adding
V Y V T to the doubly stochastic matrix 1

n eeT results in another doubly stochastic
matrix.

In the following Q̂ is as defined in Proposition 3.2. By the Schur complement
theorem we know that U − uuT ≽ 0, hence, we have that

uT Q̂u≤ 〈Q̂, U〉
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= 〈B̃ ⊗ Ã, U〉 − 〈I ⊗ S∗, U〉 − 〈T ∗ ⊗ I , U〉

= 〈B̃ ⊗ Ã, U〉 −
n−1∑

i, j=1

S∗i j〈I ⊗ Ei j , U〉 −
n−1∑

i, j=1

T ∗i j〈Ei j ⊗ I , U〉

= 〈B̃ ⊗ Ã, U〉 − tr(S∗)− tr(T ∗)

= 〈B̃ ⊗ Ã, U〉 − 〈λÃ,µB̃〉−.

Thus, we can compare the two bounds by

QPB(A, B)≤ y T Q̂ y + 〈λÃ,µB̃〉+
2
n

tr(BJAX )− 1
n2
(eT Ae)(eT Be)

≤ 〈B̃ ⊗ Ã, U〉+ 2
n

tr(BJAX )− 1
n2
(eT Ae)(eT Be)

= 〈B̃ ⊗ Ã, U〉+ 2
n

vec(V T BJAV )T u+
1
n2
(eT Ae)(eT Be)

= SDPPB(A, B).

To prove the other inequality, we make use of a lemma of Povh and Rendl
[PR09]. They give an alternative description of the feasible set of QAPSDP in
terms of blocks of Y . For this we split the n × n-matrix-variable Y of (3.1) into
n2 blocks of size n× n, which we call Y (i j). We write Y =

�
Y (i j)

�
1≤i, j≤n, and use

similar notation for other block-matrices.

Lemma 3.6 (Lemma 6 in [PR09]). A Y =
�
Y (i j)

�
1≤i, j≤n ∈ Sn

2

+ , Y ≥ 0 is feasible for
(3.1) if and only if

(i) 〈In ⊗ (Jn − In) + (Jn − In)⊗ In, Y 〉= 0,

(ii) tr
�
Y (ii)

�
= 1 ∀i,

∑n
i=1 diag

�
Y (ii)

�
= e,

(iii) Y (i j)e = diag
�
Y ( j j)

� ∀i, j,

(iv)
∑n

i=1 Y (i j) = e diag
�
Y ( j j)

�T
.

Lemma 3.7.
SDPPB(A, B)≤ SDPQAP(A, B).

Proof. With the properties of Lemma 3.6 we can show that we get a feasible so-
lution for SDPPB(A, B) from a feasible solution Y of SDPQAP(A, B) by setting
U = (V T ⊗ V T )Y (V × V ) and u = (V T ⊗ V T )y , which is the transformation to a
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Slater-feasible variant of SDPQAP (see e.g., the thesis of Uwe Truetsch [Tru14]).
Similarly to Y , we can split U into (n− 1)2 blocks of size (n− 1)× (n− 1), which
we call U (i j). We get an explicit formula for these blocks in terms of the Y (i j), if
we see V ⊗ V as n(n− 1) blocks of size n× (n− 1), since then all block sizes are
compatible with multiplication.

U = (V T ⊗ V T )Y (V × V ),

= (V T ⊗ V T )

� n∑
k=1

Y (ik)Vk jV

�

1≤i≤n
1≤ j≤n−1

,

=

� n∑
l=1

Vl iV
T

n∑
k=1

Y (lk)Vk jV

�

1≤i, j≤n−1

,

hence

U (i j) =
n∑

l,k=1

Vl iVk jV
T Y (lk)V.

We can now use ((i))-((iv)) to derive some properties of U . First note that
by ((i)) and ((ii)) we know that tr(Y (i j)) = δi j , and by ((ii)) and ((iii)) that
tr(Y (i j)J) = 1. Hence, we see that

〈Ei j ⊗ In−1, U〉= tr(U (i j)),

= tr

 
n∑

l,k=1

Vl iVk jV
T Y (lk)V

!
,

=
n∑

l,k=1

Vl iVk j tr
�

Y (lk)
�

In −
1
n

Jn

��
,

=
n∑

l=1

Vl iVl j −
1
n

n∑
l,k=1

Vl iVk j ,

= vT
i v j − 0= δi j .

Similarly, we can use
∑n−1

i=1 Vl iVki = (V V T )lk = δlk − 1
n , ((i)), ((ii)) and ((iv)) to

show that

〈In−1 ⊗ Ei j , U〉=
�n−1∑

i=1

U (ii)
�

i j

,

=

 
n−1∑
i=1

n∑
l,k=1

Vl iVkiV
T Y (lk)V

!

i j

,
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=

 
n∑

l=1

V T Y (l l)V − 1
n

n∑
l,k=1

V T Y (lk)V

!

i j

,

=
�

V T V − 1
n

V T JV
�

i j
,

= (In−1 − 0)i j = δi j .

To construct a feasible u with the objective value we need, we use that we can
add Y − y y T ≽ 0, y = diag(Y ) to (3.1) without changing the optimal value of
SDPQAP. With an optimal solution (Y, y) we thus set

(U , u) =
�
(V T ⊗ V T )Y (V ⊗ V ), (V T ⊗ V T )y

�
.

With ((ii)) we see that

(V ⊗ V )u= (V ⊗ V )(V T ⊗ V T )y,

= (I − 1
n

J)⊗ (I − 1
n

J)y,

= y − 1
n
(J ⊗ I)− 1

n
(I ⊗ J) +

1
n2

J y,

= y − 1
n

e ≥ −1
n

e.

Since Y and Y − y y T are positive semidefinite, the matrices (V T ⊗ V T )Y (V ⊗
V ) = U and (V T ⊗ V T )(Y − y y T )(V ⊗ V ) = U − uuT are positive semidefinite
as well, and thus feasible for SDPPB(A, B). What remains to be seen is that the
objective values of the two programs are the same.

〈B̃ ⊗ Ã, U〉= tr((V ⊗ V )(V T ⊗ V T )(B ⊗ A)(V ⊗ V )(V T ⊗ V T )Y ),

= tr(((I − 1
n

J)⊗ (I − 1
n

J))(B ⊗ A)((I − 1
n

J)⊗ (I − 1
n

J))Y ),

= tr((B ⊗ A)(Y − 1
n

e y T )((I − 1
n

J)⊗ (I − 1
n

J))),

= tr((B ⊗ A)(Y − 1
n

e y T − 1
n

yeT +
1
n2

J)),

= 〈B ⊗ A, Y 〉 − 2
n

eT (B ⊗ A)y +
1
n2
(eT Ae)(eT Be),

and

2
n

vec(V T BJAV )T u=
2
n

vec(V T BJAV )T (V T ⊗ V T )y,
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=
2
n

vec(V V T BJAV V T )T y,

=
2
n

vec((I − 1
n

J)BJA(I − 1
n

J))T y,

=
2
n

vec(BJA)T y − 2
n2

vec(BJA)T (I ⊗ J)y

− 2
n2

vec(BJA)T (J ⊗ I)y +
2
n3

vec(BJA)T J y,

=
2
n

vec(BJA)T y − 2
n2
(eT Ae)(eT Be),

thus

〈B̃ ⊗ Ã, U〉+ 2
n

vec(V T BJAV )T u+
1
n2
(eT Ae)(eT Be) = 〈B ⊗ A, Y 〉.

Here we used properties ((i))-((iv)), that vec(ABC) = (C T ⊗ A)vec(B) and that A
and B are symmetric.

Proof of Theorem 3.3. The only inequality we have to show is

QPB(A, B)≤ SDPQAP(A, B),

since the leftmost inequality was shown in [AB01a]. By Lemma 3.5 and Lemma
3.7 we have

QPB(A, B)≤ SDPPB(A, B)≤ SDPQAP(A, B)

and the theorem follows.

Remark 3.8. While it was expected that SDPQAP(A, B), which has O(n4) linear
inequality constraints, is better than the projected eigenvalue bound PB(A, B), it
was less so for the bound SDPPB(A, B) introduced during the proof of Theorem
3.3, since it only has O(n2) linear inequality constraints.

3.3 Symmetry Reduction for the SDP Bound

We will now investigate the Jordan reduction method, which was described in
Chapter 2, for the SDP bound (3.1) for quadratic assignment problems.

First, we have to transform this program into conic form, as seen on the right
side of equation (2.3). We get a feasible solution X0 by forming the outer product
of a vectorized permutation-matrix, for example we can set

X0 = vec(In)vec(In)
T .
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We get the space L, as seen in Chapter 2, by

L= {X ∈ Sn2 | 〈Ai , X 〉= 0 ∀i ∈ [m]},

where

{Ai}i∈[m] = {Jn2 , In ⊗ (Jn − In) + (Jn − In)⊗ In, In ⊗ E j j and E j j ⊗ In ( j ∈ [n])}

are the data-matrices of the constraints of the SDP relaxation (3.1). Accordingly,
the orthogonal complement is exactly L⊥ = span{A1, . . . , Am}.
Theorem 3.9. Consider an admissible subspace, say S ⊂ Sn2

, for the QAP relaxation
(3.1) with n> 2. Assume that I ∈ S or PS(N n) ⊆N n. Then:

1. S has a basis of nonnegative matrices with disjoint supports.

2. If S is a Jordan subalgebra of Sn
2
, i.e. closed under taking squares, then S is a

Jordan configuration.

3. If PS(Sn+) ⊆ Sn+, and S is unital, then S is a Jordan configuration.

Proof. Let S be an admissible subspace for the QAP relaxation (3.1) with n > 2.
The first claim of the theorem is an immediate consequence of Propositions 2.17
and 2.16.

To show the second claim, note that, by assumption, S contains X0,L⊥ and its
square, which we will now calculate. In [BK22b] the authors show that:

X0,L⊥ =
1

n2 − n
(Jn2 − In ⊗ Jn − Jn ⊗ In) +

1
n− 1

In2 .

Straightforward calculation now yields

X 2
0,L⊥ =

n2 − 2n+ 2
n2(n− 1)2

Jn2 − 1
n(n− 1)2

(In ⊗ Jn + Jn ⊗ In) +
1

(n− 1)2
I ,

X 4
0,L⊥ =

1
(n− 1)2

X 2
0,L⊥ +

n− 2
n(n− 1)2

Jn2 .

Thus, S contains the all-ones matrix if n> 2, since

n− 2
n(n− 1)2

Jn2 = X 4
0,L⊥ −

1
(n− 1)2

X 2
0,L⊥ ,

and the right-hand-side terms both belong to S. Thus, S must therefore have a
0/1 basis, i.e. it must be a partition subspace, since it has a basis of nonnegative
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matrices with disjoint supports. To show that it is in fact a Jordan configuration,
we only need to show still that it contains the identity matrix. To this end, it
suffices to note that all the diagonal entries of X 2

0,L⊥ are the same, and different
from the off-diagonal entries. Since S has a 0/1 basis, it must therefore contain
the identity.

We now prove the third claim in the theorem. If we assume PS(Sn+) ⊆ Sn+, and
that S unital, then S is closed under taking squares, i.e. it is a Jordan subalgebra of
Sn [Per17, Lemma 5.2.2]. Now the result follows from part 2 of this theorem.

The important practical implication of this theorem is that the optimal admis-
sible Jordan configuration S of the QAP relaxation (3.1) may be computed using
Algorithm 3. The resulting reduction is at least as good as the known ones from
the literature, as we now show. "At least as good" means here that the other
algorithms return partition spaces which refine the partition space returned by
Algorithm 3. Thus, the better reduction results in an optimization problem in
fewer variables.

Corollary 3.10. This symmetry reduction of the QAP relaxation (2.2) via Algorithm
3 is at least as good as both the group symmetry reduction (see [KS10; KS12]) and
the reduction to the smallest coherent algebra containing the data matrices of the
program (via the Weisfeiler-Leman algorithm [LW68]).

Proof. The symmetric part of a coherent configuration is a Jordan configuration,
and the partition given by the orbitals of a group leaving the program invariant
is a coherent configuration. Both the partition spaces given by the coherent con-
figuration and the partition given by orbitals are admissible since they adhere to
stricter conditions allowing for symmetry reduction than required for admissible
subspaces. Since Algorithm 3 returns the coarsest admissible Jordan configura-
tion, both coherent configurations returned by the other algorithms refine it.

3.3.1 Results of Reductions of QAPLib Problems

In practice the (partition) Jordan reduction is not much stronger than group sym-
metry reduction, and reduction to the smallest coherent algebra containing the
data matrices. When comparing reductions for data from QAPLib [BKR97], only
a single reduction (esc16f), of the ones that were symmetry reduced before, was
stronger, the others were exactly the same as reported in [KS10], where the re-
duction was done using group symmetry. But we managed to reduce some larger
instances for the first time. We also do gain a large speed up in determining the
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reduction, since we avoid having to determine the automorphism groups of ma-
trices. In Table 3.1 we give the dimension of the smallest admissible partition
subspace for each problem (for which we determined a reduction), the original
number of variables of the problem, and the time needed for the reduction. In
Table 3.2 we show the time needed to block-diagonalize (using the algorithm de-
scribed in [Mur+10]) and solve these problems afterwards (if the dimension of
the admissible subspace was at most 3000), as well as the resulting bounds. The
optimal value of most of these is known exactly which we give in the last row,
taken from http://anjos.mgi.polymtl.ca/QAPLib/inst.html.

3.4 Concluding Remarks

We have shown that indeed the optimal admissible subspace semidefinite pro-
gramming relaxation of the quadratic assignment problem is a Jordan configura-
tion in Theorem 3.9 of Section 3.3 under some weak requirements, and applied
this to the symmetric instances of QAPLib.

http://anjos.mgi.polymtl.ca/QAPLib/inst.html
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QAP Dim. Red. dim. Jordan red. (s)

chr18b 52650 14742 0.358
esc16a 32896 150 0.162
esc16b 32896 155 0.192
esc16c 32896 405 0.194
esc16d 32896 405 0.171
esc16e 32896 135 0.166
esc16f 32896 3 0.100
esc16g 32896 230 0.207
esc16h 32896 90 0.130
esc16i 32896 280 0.254
esc16j 32896 150 0.214
esc32a 524800 2112 3.826
esc32b 524800 96 3.306
esc32c 524800 366 3.228
esc32d 524800 342 3.097
esc32e 524800 120 2.885
esc32g 524800 180 2.858
esc32h 524800 666 3.051
esc64a 8390656 679 57.581
kra32 524800 28752 3.099
nug12 10440 2952 0.077
nug15 25425 7425 0.152
nug16b 32896 4704 0.147
nug20 80200 21000 0.819
nug21 97461 27783 0.474
nug22 117370 29766 0.757
nug24 166176 41760 1.010
nug25 195625 28675 1.132
nug27 266085 75087 1.489
nug28 307720 78792 1.865
scr12 10440 2952 0.057
scr15 25425 13275 0.147
tai64c 8390656 75 55.839
tho30 405450 112950 2.927
tho40 1280800 333600 9.477
wil50 3126250 813750 27.123

Table 3.1: Results of the numerical symmetry reduction of QAPLib problems using
Algorithm 3.
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QAP block-diag. (s) solve (s) blocks (size × mult.) optimal value (3.1) QAP optimum

esc16a 0.884 0.229 6× 5,3× 5,1× 15, 63.285 68
esc16b 0.749 0.285 7× 5,1× 15, 289.999 292
esc16c 2.766 0.759 12× 5,1× 15, 153.999 160
esc16d 2.714 0.373 12× 5,1× 15, 13.000 16
esc16e 0.753 0.159 6× 5,2× 5,1× 15, 26.337 28
esc16f 0.040 0.048 1× 3, 0.000 0
esc16g 1.109 0.217 9× 5,1× 5, 24.740 26
esc16h 0.414 0.125 5× 5,1× 15, 976.228 996
esc16i 1.572 0.296 10× 5,1× 5, 11.375 14
esc16j 0.690 0.167 7× 5,1× 10, 7.794 8
esc32a 482.027 23.958 26× 6,1× 6, 103.320 130
esc32b 11.502 0.041 2× 24,1× 24, 131.883 168
esc32c 51.146 0.296 10× 6,1× 36, 615.178 642
esc32d 56.076 0.213 9× 6,2× 12,1× 36, 190.227 200
esc32e 11.436 0.054 5× 6,1× 30, 1.900 2
esc32g 14.941 0.096 7× 6,1× 12, 5.833 6
esc32h 114.943 1.135 14× 6,1× 36, 424.398 438
esc64a 1 985.917 0.885 13× 7,2× 7,1× 21, 97.750 116
nug12 12.884 80.019 48× 2,24× 2, 567.970 578
scr12 12.894 83.330 48× 2,24× 2, 31409.997 31410
tai64c 182.909 0.153 2× 15,1× 30, 1 811366.481 ≥1855928

Table 3.2: Details on solving (3.1) for QAPLib instances via block-diagonalization.
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4
Energy Minimization on a Toric Grid as a

QAP

In this chapter we apply the three bounds described in Chapter 3 to a discrete
energy minimization problem. It was first described in [Tai95] as the problem of
printing a particular shade of gray, by repeating the same tile of black and white
squares in all directions. Other applications from physics are the search for ground
states of a two-dimensional repulsive lattice gas at zero temperature ([Wat97]),
and more generally the Falicov-Kimball model ([FK69; Ken94]), which is relevant
for modelling valence fluctuations in transition metal oxides, binary alloys and
high-temperature super-conductors ([Wat97]).

To get a distribution of black and white tiles as equal as possible, it is natu-
ral to view the problem of printing a shade of gray as a problem of minimizing
the potential energy between repulsive particles on a toric grid. This problem
can then be reformulated as a quadratic assignment problem, which allows us to
apply the three bounds of Chapter 3 to this problem. We will see in Proposition
4.4 and Proposition 4.5 that both the projected eigenvalue bound, and the convex
quadratic programming bound, coincide with an eigenvalue bound for this prob-
lem introduced in [BDL13]. In Section 4.2 we describe the technique one may
use to calculate the semidefinite programming bound, which involves a symmetry
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reduction of the problem to a more manageable size. Our approach is based on
the recent Jordan reduction method of Parrilo and Permenter [PP19]. Finally, in
Section 4.4 we present numerical results on the bounds for instances on different
grid sizes, including the semidefinite programming bound after Jordan reduction,
and thus prove optimality of certain grid arrangements. In this way we extend
earlier results by Bouman, Draisma and van Leeuwaarden [BDL13].

Energy minimization in the continuous setting, specifically on spheres and in
Euclidean space, were studied before by Cohn and Kumar [CK06]. There the au-
thors prove universal optimality of certain particle configurations, i.e. optimality
for all reasonable potential functions. After symmetry reduction, they reduce their
bound to an infinite sized linear program, with variables that correspond to the
distances between particles, and how often they appear. The main difference in
this work, other than us placing the particles on a discrete (toric) grid, is that we
do not consider universal optimality, but instead work with a fixed function for
the potential energy of pairs of particles. This allows us to consider bounds which
are, after reduction, based on variables that correspond to all vectors between
pairs of particles.

4.1 Energy Minimization on a Toric Grid as a QAP

We generalize a problem described by Taillard in [Tai95], which models the prob-
lem of printing a certain shade of gray with only black and white squares ("pixels").
An example of these problems is included in the QAPLib dataset [BKR97], namely
Tai64c.

The goal is to print a particular shade of gray with a given density m/n (ratio
of black to total squares), which is done by repeating a grid of n= n1× n2 square
cases, exactly m of which are black. We want the cases to be as regular as possible,
so it is natural to model this as an energy minimization problem, with repulsive
particles corresponding to the black squares. We define [k] := {1, 2, . . . , k}.
If we have two particles (i.e. black squares) at locations (x1, y1) ∈ [n1] × [n2]
and (x2, y2) ∈ [n1]× [n2], the potential energy between them is inverse to their
distance, where the distance is given by the shortest path metric on the toric grid,
which also known as Lee metric. We use this grid, since we wish to tile the plane
with the n1 × n2-rectangles, as can be seen in Figure 4.1. The potential energy
associated with two repulsive particles at respective positions (x1, y1) ∈ [n1]×[n2]
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and (x2, y2) ∈ [n1]× [n2] is

f(x1,y1),(x2,y2) =
1

dLee((x1, y1), (x2, y2))
,

if the coordinates are different, where

dLee((x1, y1), (x2, y2)) =min(|x1−x2|, n1−|x1−x2|)+min(|y1− y2|, n2−|y1− y2|)
is the Lee distance, given by the shortest path metric on the toric grid. We set
fi,i = 0.

Figure 4.1: Example of an n1 × n2 = 8× 8 grid tiling with m = 4, and the corre-
sponding toric interpretation of the 8× 8 grid.

We can then formulate this problem as QAP with matrices A = (ai j), B =
(bi j) ∈ Rn×n, indexed by grid points i = (x i , yi) ∈ [n1] × [n2], j = (x j , y j) ∈
[n1]× [n2], given by

ai j =

(
1, if i, j ≤ m

0, otherwise.
, bi j = fi, j = f(x i ,yi),(x j ,y j). (4.1)

In the definition of A we compared a grid point to an integer m. The ordering of
the grid points does not matter for the optimal value or the symmetry reduction, so
it is enough to assume that we have any fixed ordering of the indices, i.e. we may
associate [n] with [n1]× [n2] and will write [n] = [n1]× [n2] when convenient.
We may also assume that the ordering is such that the nonzero elements of the
matrix A are given by the m×m-block in the upper left corner, so that

min
π∈Sn

n∑
i, j=1

ai j bπ(i)π( j) = min
π∈Sn

∑
i, j≤m

bπ(i)π( j) = min
T⊆[n1]×[n2]
|T |=m

∑
a,b∈T

fa,b (4.2)
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Note that the QAP has dimension n= n1 × n2, and its semidefinite relaxation
has dimension n2, which is already 4096 on an 8× 8 grid.

To reduce the number of cases one has to look at, we can show a that selecting
the complement of an optimal solution leads to another optimal solution.

Proposition 4.1. Consider a [n] = [n1] × [n2] grid, and a function f : [n] × [n]
with

∑
j∈[n] f (i, j) =

∑
j∈[n] f ( j, i) = c for all i ∈ [n] and a constant c ∈ R. Then,

if T ⊆ [n] minimizes
min

T⊆[n1]×[n2]
|T |=m

∑
a,b∈T

fa,b,

then S = [n] \ T minimizes

min
S⊆[n1]×[n2]
|S|=n−m

∑
a,b∈S

fa,b.

Proof. We can rewrite the objective function as
∑

a,b∈T

fa,b =
∑

a,b∈[n]
fa,b −

∑
a/∈T

b∈[n]

fa,b −
∑

a∈[n]
b/∈T

fa,b +
∑
a/∈T
b/∈t

fa,b

= cn− 2c(n−m) +
∑

a,b∈S

fa,b.

Since the term cn−2c(n−m) is independent of T and S, minimizing
∑

a,b∈T fa,b

is equivalent to minimizing
∑

a,b∈S fa,b.

4.1.1 Eigenvalue Bound of Bouman, Draisma and Leeuwaarden

Problem (4.2) was considered before in [BDL13], specifically for the case of the
Lee-metric, and m = n

2 (which we can see as special case of our variant). They
took a look at a different relaxation of the problem, which they call fractional total
energy

min x T Bx (4.3)

s.t. x T x = x T e = m,

where B = (bi, j) is the matrix of potential energies between grid points i and j,
as defined in 4.1. In the relaxation (4.3), the discrete variables x i correspond
to particle positions, relaxed to continuous values. Thus, if x is the characteristic
vector of a subset of m particles, then it is exactly the potential energy of the set
of particles. The optimal solution of the relaxation (4.3) may be expressed in
terms of the eigenvalues of B as follows.
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Proposition 4.2 (Proposition 2.5. in [BDL13]). Let λmin be the smallest eigenvalue
of B, and λ1 the eigenvalue of B corresponding to e. Then the set of optimal solutions
of the minimization problem (4.3) consists of all vectors of the form m

n e + y, where
y belongs to the eigenspace of B with eigenvalue λmin, is perpendicular to e, and
satisfies y T y = m− m2

n .
The optimal value, and thus a lower bound for the minimum potential energy of

m particles on a toric grid with n nodes, is given by:

λ1
m2

n
+λmin

�
m− m2

n

�
. (4.4)

We will from now on refer to the bound (4.4) as BDL-eigenvalue bound,
named after the authors.

Remark 4.3. The energy minimization problem on a toric grid is a special case of
the so-called m-cluster problem, or minimum weight m-subgraph problem (see e.g.,
[MR12]). Indeed, the toric grid defines the graph in question, the edge weights
are the energies between grid points, and the minimum weight m-subgraph cor-
responds to the m grid points where the particles are placed in a minimum energy
configuration. An SDP-bound with n × n matrix variables was proposed for the
maximum weight m-subgraph problem in [MR12], which is of the form 4.5:

inf
1
4

eT Be+
1
2

eT B y +
1
4
〈B, Y 〉 (4.5)

s.t. eT y = 2m− n,∑
i

Yi j = (2m− n)y j for j = 1, . . . , n,

Yii = 1 for i = 1, . . . , n,
�

1 y T

y Y

�
≽ 0.

It is straightforward to check that this bound is at most as good as (4.3) for
our problem. Indeed, since the weighted graph given by B is vertex transitive, we
obtain a feasible solution (Y, y) for (4.5) (with the same objective value) from a
feasible solution x for (4.3) by setting

y = sym(2x − e) =
�

2m
n
− 1

�
e and Y = R((2x − e)(2x − e)T ),

where sym averages a vector over the orbits of the automorphism group of the
graph given by B, and R is the Reynolds operator of the same group (i.e. it averages
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matrix entries over the 2-orbits of the group). Thus, this bound is not strong
enough to improve the BDL-eigenvalue bound (4.4).

4.1.2 Bound Comparison

We now want to compare the BDL-eigenvalue bound with the QAP relaxations
described last section, as well as the different QAP relaxations for this specific
case.

Proposition 4.4. The BDL-eigenvalue bound of [BDL13], see (4.4), coincides with
the projected eigenvalue bound (see Proposition 3.1) for the QAP problem (4.2).

Proof. The matrix D in Proposition 3.1 is now given by

D =
2
n

AeeT B = λ1
2
n
(m, . . . , m︸ ︷︷ ︸

m times

, 0, . . . , 0)T eT ,

and thus has entries λ1
2m
n in the first m rows, and zeros otherwise. As such, the

permutation ϕ does not influence the result, and

min
ϕ

n∑
i=1

diϕ(i) = λ1
2m2

n
. (4.6)

We know that e is an eigenvector of B, hence, we have

(eT Ae)(eT Be)
n2

=
m2λ1n

n2
= λ1

m2

n
.

The matrix A has rank one, so Ã has rank one as well. Since e is an eigenvector of
B, B̃ has the same eigenvalues as B, except for λ1, thus we get

〈λÃ,µB̃〉− = λmax(Ã)λmin(B̃) = tr(Ã)λmin.

The eigenvalue of Ã is exactly

tr(Ã) = tr(V T AV ),

= tr(A)− 1
n

tr(AJ),

= m− m2

n
.
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Combining these, we see that the projection bound is the same as the eigenvalue
bound:

PB(A, B) = 〈λÃ,µB̃〉− +min
ϕ

n∑
i=1

diϕ(i) −
(eT Ae)(eT Be)

n2

= λ1
m2

n
+λmin

�
m− m2

n

�
.

Thus, the BDL-eigenvalue bound (4.4) is the same as the weakest of the QAP
bounds we considered, namely the bound PB(A, B). Furthermore, even the convex
quadratic bound cannot give us better bounds here, as we show now.

Proposition 4.5. If A and B are of the form

ai j =

(
1, if i, j ≤ m

0, otherwise.
, bi, j = fi, j = f(x i ,yi),(x j ,y j),

as defined for the energy minimization problem, then we have that

PB(A, B) =QPB(A, B),

where

PB(A, B) = 〈λÃ,µB̃〉− +min
ϕ

n∑
i=1

diϕ(i) −
(eT Ae)(eT Be)

n2

QPB(A, B) = min
X≥0 doubly stochastic

X= 1
n eeT+V Y V T

y=vec(Y )

y T Q̂ y + 〈λÃ,µB̃〉− +
2
n

tr (BJAX )− (e
T Ae)(eT Be)

n2
,

where D = (di j) =
2
nAJB and Q̂ is positive semidefinite, as defined before (see Propo-

sition 3.1, (3.2)).

Proof. If we eliminate the terms which appear in both programs, we see that we
want to show

min
ϕ

n∑
i=1

diϕ(i) = min
X≥0 doubly stochastic

X= 1
n eeT+V Y V T

y=vec(Y )

y T Q̂ y +
2
n

tr (BJAX ) .
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By definition of D the two linear terms are equal, except that on the left we mini-
mize over permutations, and on the right over doubly stochastic matrices. Because
the terms are linear, and doubly stochastic matrices are convex combinations of
permutations, the minima of the two linear terms are equal. Since Q̂ is posi-
tive semidefinite, we thus want to find a doubly stochastic X = 1

n J + V Y V T with
y T Q̂ y = 0, which minimizes the linear term. Earlier in (4.6) we have seen that

n∑
i=1

diϕ(i) = λ1
2m2

n
∀ϕ,

and is thus the linear term is constant. Hence, the term is also minimized for the
average X = 1

n J of all permutations. For this X we have Y = 1
n V T JV = 0, and

consequently y T Q̂ y = 0. Thus, there is a feasible X of QPB(A, B) with objective
value PB(A, B), and the Proposition follows since QPB(A, B)≥ PB(A, B).

Thus, it makes sense to consider the SDP-bound SDPQAP(A, B) for the energy
minimization QAP problem (4.1), if one wants to find stronger bounds than the
BDL-bound used in [BDL13].

4.2 Reducing the Relaxation of the Energy Minimization
Problem

In this section we exploit the symmetry of the SDP-bound SDPQAP in the case of
the energy minimization problem. Recall from Section 4.1, and with reference to
Figure 4.1, that this is a quadratic assignment problem given by A and B, where
B = (bi j) is indexed by toric grid points, and bi j (i ̸= j) equals the inverse of
the Lee distance (the shortest path on the grid) between grid points i and j, and
bii = 0 for all i. The matrix A is zero except for a square block of all-ones in the
upper left corner, of size equal to the number of particles on the toric grid. There
are many approaches to exploit the symmetry of a conic optimization problem.
Earlier work on group-theoretical symmetry reductions of SDP bounds for QAP
was done in [KS10; KS12]. We chose to apply the Jordan Reduction method of
Parrilo and Permenter [PP19] to our problem, which we will quickly summarize.

4.2.1 The Jordan Reduction

Parrilo and Permenter [PP19] introduced a set of three conditions a subspace has
to fulfill, such that it is possible to use it for symmetry reduction. Here we revisit
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just some of their results. A more detailed introduction, as well as an extension
to the doubly nonnegative cone, is in Chapter 2.

Definition 4.6. A projection is a linear transformation P : V → V defined on a
vector space V which is idempotent, i.e., P2 = P. If V is equipped with an inner
product, the projection is called orthogonal, if it is self-adjoint with respect to this
inner product. We denote the orthogonal projection onto a subspace L ⊂ V by PL.

We assume that the problem to be reduced is in the form

inf 〈C , X 〉
s.t. X ∈ X0 +L

X ∈ Sn+,



 (4.7)

where X0 ∈ Rn×n, and L is a linear subspace of Rn×n.

Theorem 4.7 (Theorem 5.2.4 and Proposition 1.4.1 in [Per17]). Consider the
conic optimization problem (4.7) and let S ⊆ Rn×n be a subspace of Rn×n. Define
CL = PL(C) and X0,L⊥ = PL⊥(X0). If S fulfills

(a) CL, X0,L⊥ ∈ S,

(b) PL(S) ⊆ S,

(c) S ⊇ {X 2 : X ∈ S},
then restricting the feasible set of conic program (4.7) to S results in another —
potentially significantly smaller — program, with the same optimal value:

inf 〈PS(C), X 〉
s.t. X ∈ PS(X0) +L∩ S,

X ∈ Sn+ ∩ S.

We call such an S admissible for the problem (4.7).

We will use the concept of a Jordan algebra: for our purposes this will be a sub-
space of symmetric matrices that is closed under the product X •Y = 1

2(X Y +Y X ).
It follows from condition (c) in the theorem that every admissible subspace is
a Jordan algebra. Indeed, a subspace of symmetric matrices is a Jordan alge-
bra if and only if it is closed under taking squares, due to the identity X • Y =
1
2

�
(X + Y )2 − X 2 − Y 2

�
. We will denote the full Jordan algebra of symmetric n×n

matrices by Sn.
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Note that for the SDP-bound SDPQAP one would actually use the cone of entry-
wise nonnegative matrices (i.e. doubly nonnegative matrices), as opposed to Sn+.
To deal with the nonnegativity, we will in fact work with admissible subspaces
that have 0-1 bases and where the basis matrices have disjoint support (so-called
partition subspaces).

4.2.2 Symmetric Circulant Matrices

First, we need some well-known properties of (symmetric) circulant matrices,
which will appear later in the construction of the admissible subspaces of the
relaxation of the energy minimization problem.

Definition 4.8. An n× n matrix C is called circulant, if each row is rotated one
element to the right relative to the row above, i.e., Ci j = c j−i mod n for all i, j and
fitting ck, k = 0, . . . , n− 1.

Proposition 4.9. A symmetric circulant n×n matrix C has at most ⌊ n
2 ⌋+1= ⌈ n+1

2 ⌉
unique entries, and ck = cn−k.

Proof. Let j ≥ i and k = j − i. By definition, we have ck = Ci j = C ji = cn−( j−i) =
cn−k. Hence, C is given by c0, . . . , c⌊ n

2 ⌋.

This allows us to construct symmetric circulant matrices from a given c ∈
R⌈

n+1
2 ⌉. We call this function C = circn(c0, . . . , c⌊ n

2 ⌋).

Proposition 4.10 (E.g., Theorem 7 in [Gra06]). The product of two circulant ma-
trices is a circulant matrix, and the product commutes. The product of symmetric
circulant matrices is symmetric.

We call the Jordan algebra (with product X • Y = 1
2(X Y + Y X ) = X Y ) of

symmetric circulant n× n matrices Cn. We define a 0/1-basis for Cn by

n
Cn

i = circn(di) : i = 0, . . . , ⌊n
2
⌋
o

, (4.8)

where for i /∈ {0, n
2} we set di = ei ∈ R⌊

n
2 ⌋+1, the vector with a one in position i,

and zero otherwise. For i = 0 and i = n
2 , if n is even, we set di = 2ei .
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4.2.3 Admissible Subspaces

To reduce the program SDPQAP(A, B) in (3.1) for the energy minimization prob-
lem (4.1), one should find an admissible subspace S for every such problem. In
this case L is the subspace given by the Y ∈ Sn2

with

〈In ⊗ E j j , Y 〉= 0 for j ∈ [n],
〈E j j ⊗ In, Y 〉= 0 for j ∈ [n],

〈T, Y 〉= 0,

〈Jn2 , Y 〉= 0,

where T = In⊗ (Jn− In)+(Jn− In)⊗ In, and X0 is any symmetric matrix satisfying
the linear constraints of the SDP (3.1), e.g., X0 = vec(In)vec(In)T .

Note here that we are missing the constraint that X is entry-wise nonnegative.
But it is easy to check that if we restrict S to be a partition subspace (i.e., a subspace
with an orthogonal 0/1-basis), then PS(X ) is doubly-nonnegative if X is.

Recall that, for n = n1n2, the matrix B ∈ Rn×n is defined by B(x1,y1),(x2,y2) =
1/dLee((x1, y1), (x2, y2)), where dLee is the Lee-distance (length of the shortest
path on the toric grid). The ordering of the indices [n1]×[n2] = [n]we left implicit
in earlier sections of this chapter, but now we fix it to (x , y) 7→ n2(x − 1) + y .
A ∈ Rn×n is the matrix with an m × m all-one block in the top left corner, and
otherwise zero.

In this section we will make use of Tensor products of algebras. As a reminder,
if A1, . . . , Ad1

∈ Rn1×n1 is a basis of a matrix algebra A, and B1, . . . , Bd2
∈ Rn2×n2

a basis of a matrix algebra B, then A⊗ B is the n1n2 × n1n2 matrix algebra with
basis Ai ⊗ B j , for i ∈ [d1], j ∈ [d2].

We restrict ourselves to a partition subspace, which means that the exact val-
ues of the entries of the matrix do not matter to us, only the pattern of unique
elements. For the first of the three properties, we take a look at the structure of
C := B ⊗ A.

Lemma 4.11. B ∈ Cn1 ⊗Cn2 , i.e., B is a block matrix, with n1 rows and columns of
blocks, which are arranged in a symmetric circulant pattern, and each of these blocks
is an n2 × n2 symmetric circulant matrix.

Proof. The Lee-distance between (x1, y1) and (x2, y2) depends only on x2 − x1

mod n1 and y2− y1 mod n2, and the order of the arguments do not matter. This
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means that both the sub-matrices for fixed x and for fixed y coordinates are sym-
metric circulant matrices:

�
B(i,y1),( j,y2)

�
1≤i, j,≤n1

∈ Cn1 ,
�
B(x1,i),(x2, j)

�
1≤i, j,≤n2

∈ Cn2 .

The chosen ordering of the indices (x , y) 7→ n2(x − 1) + y thus results in B ∈
Cn1 ⊗ Cn2 .

In the case n1 = n2 we can restrict the algebra further.

Lemma 4.12. If n1 = n2, then

B ∈ Cn1,n1 :=
�

X ∈ Cn1 ⊗ Cn1 : X(x1,y1),(x2,y2) = X(y1,x1),(y2,x2)
	

, (4.9)

and Cn1,n1 is a Jordan subalgebra of Cn1 ⊗ Cn1 .

Proof. B is has this symmetry by definition of the Lee-distance. Cn1,n1 is a subalge-
bra, because it is the restriction of an algebra to the commutant of {P, I}, where P
is the n×n permutation matrix switching the indices corresponding to each (x , y)
with the one corresponding to (y, x).

The other relevant Jordan algebra for our problem is described in the following
proposition.

Proposition 4.13. The subspace of n× n matrices with pattern

a b · · · b c · · · · · · c

b
.. . . . .

...
...

...
...

. . . . . . b
...

...
b · · · b a c · · · · · · c
c · · · · · · c d e · · · e
...

... e
. . . . . .

...
...

...
...

. . . . . . e
c · · · · · · c e · · · e d







m

n−m

form a Jordan algebra, say J n,m. We call the 0/1-basis corresponding to this pattern
JA, JB, JC , JD, JE .
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Proof. A straightforward calculation shows that squaring such a matrix results in
another matrix of the same pattern with parameters

a′ = a2 + (m− 1)b2 + (n−m)c2,

b′ = 2ab+ (m− 2)b2 + (n−m)c2,

c′ = (a+ (m− 1)b)c + (d + (n−m− 1)e)c,

d ′ = d2 + (n−m− 1)e2 +mc2,

e′ = 2de+ (n−m− 2)e2 +mc2.

We now want to show that the space S := Cn1 ⊗ Cn2 ⊗ J n,m, respectively S =
Cn1,n1⊗J n,m if n1 = n2, is admissible. We do this by verifying the three conditions
listed in Theorem 4.7.

Theorem 4.14. The subspace S := Cn1 ⊗Cn2 ⊗J n,m, respectively S = Cn1,n1 ⊗J n,m

if n1 = n2 is admissible for (3.1), where B and A are the matrices corresponding to
the problem of minimizing the energy of m particles on an n1 × n2 grid.

For 2< m< n− 2 the dimension of S is 5⌈ n1+1
2 ⌉⌈ n2+1

2 ⌉ in the case n1 ̸= n2, and
5
2⌈ n1+1

2 ⌉
�
⌈ n2+1

2 ⌉+ 1
�

in the case n1 = n2.

Proof. We first show that PL(S) ⊆ S. To this end, note that both T = In⊗(Jn− In)+
(Jn− In)⊗ In and Jn2 are elements of S, since Jn = Jn1

⊗ Jn2
and In = In1

⊗ In2
are

both in Cn1⊗Cn2 (and in Cn1,n1 if n1 = n2), as well as in J n,m because In = JA+ JD

and Jn = In + JB + JC + JE . Thus, T and Jn2 can be written as linear combination
of Kronecker products of elements of Cn1 , Cn2 and J n,m, and are as such elements
of S.

The other two constraints are given by matrices In ⊗ E j j and E j j ⊗ In, which
only overlap with the two basis elements Cn1

0 ⊗Cn2
0 ⊗ JA and Cn1

0 ⊗Cn2
0 ⊗ JD. Since

Cn1
0 ⊗Cn2

0 ⊗ JA =
∑m

j=1 In⊗ E j j and Cn1
0 ⊗Cn2

0 ⊗ JD =
∑n

j=m+1 In⊗ E j j , both of these
matrices are projected to zero.

Thus, all basis elements of S are sent to elements of S, and PL(S) ⊆ S.
Next, we show CL ∈ S. By Lemma 4.11, Lemma 4.12 and the definition of A,

we know that C = B ⊗ A∈ S. Since PL(S) ⊆ S, that CL ∈ S as well.
Next, we show that X0,L⊥ ∈ S. To project X0 = vec(In)vec(In)T onto L⊥, the

span of the constraint matrices, we first notice only two of them have nonzero
entries outside the diagonal, the all-one matrix Jn2 , and the matrix In ⊗ (Jn −
In) + (Jn − In)⊗ In, which we will call T from now on. The matrices In ⊗ E j j for
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j = 1, . . . , n sum to the identity matrix In2 , which means that we can easily find
an orthogonal basis of the off diagonal part of L⊥:

B1 = T,

B2 = Jn2 − In2 − T.

Since 〈T, X0〉= 0 and 〈Jn2 , X0〉= n2 we get

〈B2, X0〉= 〈Jn2 , X0〉 − 〈In2 , X0〉= n2 − n.

Hence, the off-diagonal part of X0,L⊥ is the matrix

〈B2, X0〉
〈B2, B2〉

B2 =
n2 − n

n4 − n2 − 2n(n2 − n)
B2 =

1
n2 − n

B2.

The diagonal part of X0,L⊥ is the matrix 1
n In2 , since

〈E j j ⊗ In,
1
n

In2 − X0〉= 〈E j j ⊗ In,
1
n

In2〉 − 〈E j j ⊗ In, X0〉= 1− 1= 0,

and analogously 〈In ⊗ E j j ,
1
n In2 − X0〉= 0. Combining the two parts we see

X0,L⊥ =
1

n2 − n
B2 +

1
n

In2 .

Since Jn2 , In2 and T are elements of S, we get that X0,L⊥ ∈ S.
Finally, we note that S is a Jordan algebra. This completes the proof that S

is admissible. The dimension of S follows from Cn having dimension ⌈ n+1
2 ⌉ and

J n,m having dimension 5. In the case n1 = n2 the dimension is lower, since we
can combine the basis elements Cn1

i ⊗ Cn1
j and Cn1

j ⊗ Cn1
i for each pair i ̸= j.

Thus, we have found an admissible subspace S for (3.1), where A and B are
the matrices corresponding to the problem of minimizing the energy of m particles
on an n1 × n2 toric grid. Its dimension is of order O(n1n2), which is significantly

less than the original number of variables
n4

1n4
2+n2

1n2
2

2 = O(n4
1n4

2). The number of
variables can be reduced further by fixing the variables corresponding to nonzero
entries of In ⊗ (Jn − In) + (Jn − In) ⊗ In to zero. Thus, if {B1, . . . , Bk} is a 0/1-
basis of an admissible subspace, then it is enough to optimize over variables in
the subspace S0 with basis

{Bi : 〈Bi , In ⊗ (Jn − In) + (Jn − In)⊗ In〉= 0} .
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This results in 3⌈ n1+1
2 ⌉⌈ n2+1

2 ⌉ − 1 variables in the case n1 ̸= n2, and

1.5⌈n1 + 1
2
⌉
�
⌈n2 + 1

2
⌉+ 1

�
− 1

variables in the case n1 = n2. A few examples can be seen in Table 4.1. Note that
the resulting subspace is generally not a Jordan algebra anymore.

Table 4.1: Number of variables before and after symmetry reduction.

(n1, n2) dim(Sn
2
1n2

2) dim(S) dim(S0)

(4, 4) 32896 30 17
(5, 5) 195625 30 17
(6, 6) 840456 50 29
(8, 8) 8390656 75 44
(10, 10) 50005000 105 62
(12, 12) 215001216 140 83
(24, 24) 55037822976 455 272
(100, 100) ≈ 5 · 1015 6630 3977
(1000,1000) ≈ 5 · 1023 628755 377252

(6, 5) 405450 60 35
(10,5) 3126250 90 53
(24, 12) 3439895040 455 272

4.2.4 Block-Diagonalization

We now want to block-diagonalize the admissible subspace S := Cn1 ⊗Cn2 ⊗J n,m,
respectively S = Cn1,n1 ⊗ J n,m if n1 = n2. We do this by making use of the fact
that S is a tensor product of algebras, which allows us to block-diagonalize each
part on its own.

Lemma 4.15 (See, for example, [Gra06], [KPS08]). The 0/1-basis {Cn
i : i =

0, . . . , ⌊ n
2 ⌋} of Cn has a common set of eigenvectors, given by the columns of the dis-

crete Fourier transform matrix:

Qn
i j :=

1p
n

e−2π
p−1i j/n, i, j = 0, . . . , n− 1.

The eigenvalues are

λm(C
n
k ) = 2cos(2πmk/n), m= 0, . . . , n− 1, k = 0, . . . , ⌊n

2
⌋,
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and note that

λm(C
n
k ) = λn−m(C

n
k ), m= 1, . . . , ⌊n

2
⌋, k = 0, . . . , ⌊n

2
⌋.

Thus, we can block-diagonalize Cn by sending Cn
k to the vector

λ̂(Cn
k ) := (λ0(C

n
k ), . . . ,λ⌊ n

2 ⌋(C
n
k )).

To block-diagonalize J n,m, one may use the Jordan isomorphism φ : J n,m→
R⊕R⊕ S2 given by

φ(JA) =
� n−m

0
1 0
0 0

�
, φ(JB) =

�−1
0

m−1 0
0 0

�
, φ(JC) =

Æ
m(n−m)

� 0
0

0 1
1 0

�
,

φ(JD) =
� 0

1
0 0
0 1

�
, φ(JE) =

� 0 −1
0 0
0 n−m−1

�
.

This isomorphism was used implicitly in [KOP11], but may also be verified directly
by confirming that φ(X 2) = [φ(X )]2 for all X ∈ J n,m.

We can now combine these block-diagonalizations by noticing that it is enough
to block-diagonalize each of the algebras separately; see, for example, Section 7.2.
in [KS10]. We obtain the final reduction shown in the next theorem. The proof
is omitted since it is straightforward: One just has to calculate the inner products
between the basis elements of the algebra and the data matrices, and eliminate
variables fixed to zero by 〈Bi , In ⊗ (Jn − In) + (Jn − In)⊗ In〉 = 0. We then further
scaled some variables and matrices to simplify terms further.

In the following we use the constants

dkl
i j := cos

�
2πki

n1

�
cos

�
2πl j
n2

�
,

which arise from the diagonalization of the circulant matrices.
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Theorem 4.16. The bound from (3.1), where the matrices A, B correspond to the
energy minimization problem with parameters n1, n2, n = n1n2 and m, equals the
optimal value of the following semidefinite program:

inf n
∑

i+ j>0

y b→b
i j

i + j
(4.10)

s.t.
∑

i+ j>0

�
y b→b

i j + yw→w
i j + y b↔w

i j

�
= n− 1, (4.11)

for all 0≤ k ≤
jn1

2

k
, 0≤ l ≤

jn2

2

k
:

�m
n 0
0 n−m

n

�
+
∑

i+ j>0

dkl
i j

�
y b→b

i j
1
2 y b↔w

i j
1
2 y b↔w

i j yw→w
i j

�
≽ 0, (4.12)

m(m− 1)
n

−
∑

i+ j>0

dkl
i j y b→b

i j ≥ 0, (4.13)

(n−m)(n−m− 1)
n

−
∑

i+ j>0

dkl
i j yw→w

i j ≥ 0, (4.14)

y b→b
i j , yw→w

i j , y b↔w
i j ≥ 0 ∀ i + j > 0, i = 0, . . . ,

jn1

2

k
, j = 0, . . . ,

jn2

2

k
.

We can interpret the variables as averaged occurrences of pairs of black points
(b → b), pairs of white points (w → w), and pairs of a white and a black point
(b → w), at distance (i, j). I.e. if we have a given configuration, we can count
how many pairs of points at distance (i, j) are both black, and then set y b→b

i j to
this value divided by the total number of pairs, to construct a feasible solution.
Variables corresponding to distances bigger than

� n1
2

�
respectively

� n2
2

�
are looped

around and added onto smaller distance variables, i.e. we may have variable val-
ues bigger than one.

The semidefinite program in Theorem 4.16 has block sizes of order at most
2 × 2, and is therefore a second-order cone program, which can be solved very
efficiently; see e.g. [Lob+98]. Thus, we were able to solve the SDP relaxation for
toric grids of sizes up to 100×100. Subsequently, we were also able to prove op-
timality of certain configurations of particles on toric grids, as detailed in Section
4.4.
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4.3 Towards the Checkerboard Conjecture

In [BDL13] the authors conjecture the following.

Conjecture 4.17 (Checkerboard conjecture, [BDL13]). For any d-dimensional
toric grid of size n1×n2×· · ·×nd , with n1,. . . ,nd all even, and for any reasonable
function f of the Lee distance, the arrangements of m = 1

2

∏d
i=1 ni particles that

minimize the maximal f -energy experienced by any of the particles are the two
checkerboard patterns, and only these.

While the general case of the checkerboard conjecture is still open, the authors
prove various cases in [BDL13], the strongest of which assumes that f is strictly
completely monotonic, and each ni is either 2 or a multiple of 4.

In this section we attempt to make some progress towards the general two-
dimensional case for the fixed function f = x−1, i.e. the energy is given by the
inverse of the Lee distance and n1 and n2 are even.

We start by taking a look at the dual of SDP (4.10).

Corollary 4.18. The bound from (3.1), where the matrices A, B correspond to the
energy minimization problem with parameters n1, n2, n = n1n2 and m, equals the
optimal value of the following semidefinite program:

sup (n− 1)zΣ −
∑
k,l

�m
n

X kl
11 +

n−m
n

X kl
22

�
(4.15)

− m(m− 1)
n

etzb − (n−m)(n−m− 1)
n

etzw

s.t. for all 0≤ i ≤
jn1

2

k
, 0≤ j ≤

jn2

2

k
, i + j > 0:

zΣ +
∑
kl

dkl
i j (X

kl
11 − zb

kl)≤
n

i + j
,

zΣ +
∑
kl

dkl
i j (X

kl
22 − zw

kl)≤ 0,

zΣ +
∑
kl

dkl
i j X kl

12 ≤ 0,

zΣ ∈ R+,

zb, zw ∈ R{(k,l) | k∈{0,...,⌊ n1
2 ⌋}, l∈{0,...,⌊ n2

2 ⌋}}
+ ,

X kl ∈ S2+ for all k ∈ {0, . . . ,
jn1

2

k
}, l ∈ {0, . . . ,

jn2

2

k
}.
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Proof. We dualized the symmetry reduced SDP (4.10). Here zΣ, zb, zw and X kl

dualize (4.11), (4.13), (4.14) and (4.12) respectively.

Here it is less clear how to interpret the variables. Numerically we observed
that the optimal solution is not unique, but that there always is a "nice" optimal
solution to the program in a sparse subspace. Since every feasible dual solution
results in a valid bound, adding further constraints can only result in another,
potentially weaker, valid bound. Since we do not have an argument here as to
why we can add these constraints without making the bound worse, we see the
following linear bound as a weaker version of the dual bound (4.15).

Corollary 4.19. The following linear program is a lower bound for the total energy
of m particles on a toric grid of size n1 × n2:

sup (m− 1)zΣ − m
n

et x

s.t. for all 0≤ i ≤
jn1

2

k
, 0≤ j ≤

jn2

2

k
, i + j > 0:

n
m

zΣ +
∑

k+l>0

dkl
i j xkl ≤

n
i + j

,

zΣ ∈ R+,

x ∈ R{(k,l) | k+l>0, k∈{0,...,⌊ n1
2 ⌋}, l∈{0,...,⌊ n2

2 ⌋}}
+ .

Proof. We eliminate variables of the dual bound (4.15) by setting

zb = 0,

zw
00 =

n
n−m

zΣ,

zw
kl = 0 if k+ l > 0,

X 00 = zΣ
� n−m

m −1
−1 m

n−m

�
,

X kl
i j = 0 if k+ l > 0 and i + j > 0.

Remark 4.20. Numerically this bound seems to be exactly the same as the original
bound. Since we did not find a proof of this, we conjecture that this bound is
equivalent to the bound obtained from (3.1).
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Now we want to construct an optimal solution for this problem in the case
n1 = 2k1, n2 = 2k2, m = n

2 to prove the Checkerboard Conjecture. For this, we
first add a redundant constraint n

mzΣ+et x = n
mzΣ+et x , which allows us to rewrite

the program.

sup (m− 1)zΣ − m
n

et x (4.16)

s.t.
�
Dn1
⊗ Dn2

�� n
mzΣ

x

�
≤
� n

mzΣ + et x
b

�
, (4.17)

zΣ, x ≥ 0

where

Dt =
�

cos
�

2πi j
t

��
i, j=0,...,⌊ t

2 ⌋

and

b =
�

n
0+ 1

, . . . ,
n

0+ k2
,

n
1+ 0

, . . . ,
n

1+ k2
, . . . ,

n
k1 + k2

�t

.

Numerically we observed that in the checkerboard case m= n
2 we can always

obtain an optimal solution if we assume that the inequality constraint (4.17) is
sharp. The inverse of Dt is

D−1
t =

2
t

�
(Dt)i jc

t(i)c t( j)
�

i j ,

where

c t(i) =

(
1p
2
, if i ∈ {0, t

2}p
2, otherwise.

Assuming equality we have

� n
mzΣ

x

�
=
�
D−1

n1
⊗ D−1

n2

�� n
mzΣ + et x

b

�
, (4.18)

and writing out the first row allows us to eliminate the x variable completely.

n
m

zΣ =
4
n

�
1
4

� n
m

zΣ + et x
�
+

1
2

Cn1,n2

�
,

=
1
m

zΣ +
1
n

et x +
2
n

Cn1,n2

⇒ et x = n
�

n
m

zΣ − 1
m

zΣ − 2
n

Cn1,n2

�
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=
n2 − n

m
zΣ − 2Cn1,n2

= (2n− 2)zΣ − 2Cn1,n2

where
Cn1,n2 :=

∑
i=0,...,k1
j=0,...,k2

i+ j>0

cn1(i)cn2( j)
n

i + j
.

Note that Cn1,n2 is exactly the potential energy in the case that there is a particle on
every spot on the grid. Substituting this for eT x and assuming equality in (4.18)
results in the univariate linear program

sup − n
2

zΣ + Cn1,n2

s.t.
�
D−1

n1
⊗ D−1

n2

��2nzΣ − 2Cn1,n2

b

�
≥ 0, (4.19)

zΣ ≥ 0.

Note that every feasible solution still results in a valid lower bound of the energy
minimization problem (in the case m = n/2), as we are only making the dual
more strict.

Let us take a look now at the constraints in (4.19). The first row is redundant,
as we know it is exactly n

mzΣ = 2zΣ ≥ 0. The other constraints are of the form

nzΣ − Cn1,n2 +
∑

i=0,...,k1
j=0,...,k2

i+ j>0

cn1(i)cn2( j)
n

i + j
cos

�
2πki

n1

�
cos

�
2πl j
n2

�
≥ 0

for k = 0, . . . , k1, l = 0, . . . , k2, k + l > 0, if we rescale the constraints to make
the coefficient of zΣ the same in all constraints. The only difference between
the different constraints are the cosine terms, and all coefficients in the sum are
nonnegative.

We can make this problem more clear by bringing the objective term to one
side in each of the constraints to obtain

−n
2

zΣ + C ≤ 1
2




Cn1,n2 +
∑

i=0,...,k1
j=0,...,k2

i+ j>0

cn1(i)cn2( j)
n

i + j
cos

�
2πki

n1

�
cos

�
2πl j
n2

�
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=
1
2

∑
i=0,...,k1
j=0,...,k2

i+ j>0

cn1(i)cn2( j)
n

i + j

�
1+ cos

�
2πki

n1

�
cos

�
2πl j
n2

��
.

The sum here describes exactly the energy of a "fractional", but periodic set of
particles with weight

1
2
+

1
2

cos
�

2πki
n1

�
cos

�
2πl j
n2

�
(4.20)

in position (i, j). I.e., the minimum energy of these fractional solutions is a lower
bound for the minimum energy in the system. Note that while we were optimizing
over

�n1n2
m

�
possible choices of particle positions before, there are now just k1k2−1

possibilities. While this bound is generally weaker than the SDP bound we started
with, this one seems to be sharp in the checkerboard case m= n

2 .
Indeed, in the case k = k1 and l = k2 this (fractional) set of particles is exactly

the checkerboard solution
1
2
+

1
2
(−1)i+ j .

What remains to be shown is that this is really the minimum energy between the
different fractional solutions for k = 0, . . . , k1, l = 0, . . . , k2, k+ l > 0.

While we do not manage to prove that the checkerboard is the optimal con-
figuration of the fractional solutions described by (4.20), this approach reduces
the (numerically sharp) bound for the two-dimensional case of Conjecture 4.17
for a fixed potential function to a search over just O(n1n2) fractional solutions. It
seems reasonable to expect that, with some more work, optimality of the checker-
board can be proven this way. It remains to be seen whether this approach, while
stronger than the bounds used in [BDL13], is strong enough to prove the conjec-
ture for arbitrary potential functions (as the approach of [BDL13] seems to fail
there). As we will see in Section 4.4 our bound is sharp for more general particle
configurations other than m = n

2 , which may lead to a more general conjecture
about lattice-like particle arrangements on toric grids.

4.4 Numerical Results

Here we compare the eigenvalue-bound with the SDP-bound for the energy mini-
mization problems. The upper bounds were found using simulated annealing (see
Algorithm 4).
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Algorithm 4: Simulated annealing algorithm
i ter ← number of iterations to perform
P ← random configuration of m particles
val ← energy of P = E(P)
T ← 1
a← i ter

q
1

i ter
for i t ← 1 to iterations do

T ← aT
P ′← P
Move a random particle of P ′ to a neighboring position
if E(P ′)< val or exp(−(E(P ′)− val)/T )≥ rand(0, 1) then

val ← E(P ′)
P ← P ′

return val
Calculating the SDP-bound directly is prohibitively slow, which is why we ex-

ploited the symmetries of the problems first, as described in Section 4.2. After
this reduction we can calculate these bounds very efficiently, solving a case of the
problem on a 10 × 10-grid in 0.2s, 1.3s on a 50 × 50-grid, and in about 40s on
100× 100-grid, using Mosek on a 4-core 3.4GHz Processor. In [BDL13] Bouman,
Draisma and van Leeuwaarden prove optimality for the checkerboard arrange-
ment in the cases that n1 = n2 are even, and m = n1n2

2 . This can be seen for the
grid sizes we checked as well, but we do get some more cases where the bound is
sharp.

If one of the bounds is sharp, then we get a proof of optimality for these
parameters, if we can construct the exact optimal solution. Furthermore, we can
even prove optimality in some cases even if the bound is not completely sharp,
as explained in the following Proposition. This allows us to work around small
numerical rounding issues in some cases, by rounding to an exact rational solution
close enough to the optimum.

Proposition 4.21. Let V = {v1, . . . , vk} be the set of unique entries of the matrix of
potentials B. The one-dimensional shortest-vector-problem for these values is

r =min |s− t|

s.t. s, t ∈
¨

x = 2
k∑

i=1

αi vi | αi ∈ Z
«

s ̸= t.
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If a feasible solution of the QAP has objective value that differs by less than r from
the SDP lower bound, then this feasible solution is optimal.

Proof. Both the matrix A and the optimization variable X ∈ Πn of this QAP are
symmetric 0/1-matrices, and B is symmetric as well, with zeros on the main diag-
onal, which means that the objective value is of the form

∑n
i, j,k,l=1 aik b jl X i jXkl =∑n

i, j=1,i< j 2αi j bi j , where αi j ∈ Z. Hence, different objective values have to at least
differ by r.

For the inverse Lee-distance potential on a 6× 6-grid the set V is
§

0,1,
1
2

,
1
3

,
1
4

,
1
5

,
1
6

ª
,

and r = 2
�1

6 +
3
5 − 3

4

�
= 1

30 , which is optimal since 30 is the least common de-
nominator of the fractions in 2V . Similarly, one finds r = 1

210 for a 7 × 7-grid,
r = 1

420 for a 8× 8-grid and r = 1
1260 on a 10× 10-grid. In the Tables 4.2,4.3, 4.4

and 4.5 we give the bounds for square grids of sizes 6,7,8 and 10 respectively. As
proven in Proposition 4.1, we only need to consider m≤ n

2 . Bold font in the tables
signify sharp bounds, in the sense of Proposition 4.21, which we then illustrate in
Figures 4.2, 4.3, 4.4 and 4.5.

Note that we could find several new optimal configurations by computing the
SDP bound SDPQAP(A, B), for example the case m = 20 on a 10× 10 grid. We
do not include results for the weaker SDP bound SDPPB(A, B) in the tables, since
these turned out to equal the projected eigenvalue bound for small instances. We
do not know if these bounds coincide in general, though.

In these small cases we noticed that the bound is sharp only in (some) cases
where m divides n1n2, and are, except in the case m= 4 for some choices of n1 and
n2, given by lattices. In these cases the nonzero variables y b→b

i j do actually hint
as to how the lattice can be constructed. For example in the case n1 = n2 = 10,
m = 20 the optimal solution has y b→b

i j = 0 except for y b→b
05 = y b→b

55 = 0.2 and

y b→b
12 = y b→b

13 = y b→b
24 = y b→b

34 = 0.4, and their symmetric counterparts. Com-
pare these to the drawing in Figure 4.5: These are exactly the distances appearing
in the drawing, namely (0,5), (5,5), (1,2), (1,3), (2,4), and (3, 4). We can use
this knowledge to construct the solution as follows. The size of the orbit of a sin-
gle point, repeatedly shifting it in direction (i, j), is lcm

�
lcm(n1,i

i , lcm(n2, j
j

�
, where

lcm(a, b) denotes the least common multiple of a and b. We say that two lattice
directions are distinct, if the corresponding orbits of the same point overlap only
in that point. In this example the orbit sizes are 2 for the directions (0,5) and
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(5,5), 5 for (2,4), and 10 for (1, 2), (1,3) and (3,4). If we now choose pairwise
distinct orbits of orbit sizes factoring m, we can reconstruct the lattice solution by
taking repeated orbits. In this case we can construct the solution in Figure 4.5 for
n1 = n2 = 10 and m= 20 by choosing the triple of generators {(0,5), (5,5), (2,4)}
or any of the pairs {(1, 2), (0, 5)}, {(1,2), (5,5)}, {(1, 3), (0, 5)}, {(3,4), (5,5)}. Al-
ternatively we can find a second solution (which is the same, but mirrored), by
choosing swapping the two axes of each generator.

This way one can rapidly find cases where the bound is sharp, at least numer-
ically. We do not get formal mathematical proofs for these cases in the sense of
Proposition 4.21, as we cannot make the numerical gap small enough. In about
30 minutes we were able to identify 2382 such cases (of the 15083 cases where m
divides n1n2), from grid sizes 1× 1 to 50× 50. We list a few such cases in Figure
4.6.

4.5 Concluding Remarks

We have been able to use semidefinite programming bounds to identify several
new minimum energy configurations of repulsing particles on a toric grid, as
shown in Figure 4.6, for example. The next step would be to use our insight on
optimal lattice configurations that we obtained numerically, to prove optimality
for the generalized families of corresponding lattice configurations, similar to the
way the authors of [BDL13] proved optimality of certain ’checkerboard’ configu-
rations. While even the general checkerboard case is still open, we constructed
parts of the optimal solution for these cases in 4.3, which is numerically sharp, but
did not manage to prove sharpness. Investigating this and similar cases remains
a topic for future research.

While we only explicitly considered the potential energy function given by the
inverse of the Lee metric, all results in this chapter generalize to a much wider
family of functions in a straightforward manner. It may be of interest to attempt
to prove universal optimality of certain configurations for all (reasonable) poten-
tial functions, similar to what was done in [CK06] for points on spheres. Another
interesting question is whether one could obtain stronger bounds than the ones
considered in [CK06] based on the QAP formulation for both the sphere and Eu-
clidean space, and how the bounds [CK06] fit between the three bounds consid-
ered in this chapter. If one considers the limit of the linear program in Corollary
4.19 as the grid size approaches infinity, one would obtain an infinite dimensional
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LP similar to [CK06], but with constraints and variables corresponding to each ap-
pearing vector between points, not just their distances.

m= 1 m= 2 m= 4

m= 12 m= 18

Figure 4.2: Optimal arrangements on a 6× 6 grid

m= 1 m= 2

Figure 4.3: Optimal arrangements on a 7× 7 grid
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m= 1 m= 2

m= 4 m= 32

Figure 4.4: Optimal arrangements on a 8× 8 grid

m= 1 m= 2

m= 4 m= 20

m= 50

Figure 4.5: Optimal arrangements on a 10× 10 grid
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n1=21,n2=42,m=42,
generated by (1,13)

n1=24,n2=44,m=4,
generated by (12,11)

n1=24,n2=40,m=120,
generated by (1,3)

n1=26,n2=39,m=78,
generated by (1,5)

n1=45,n2=45,m=675,
generated by {(1,1),(0,3)}

n1=45,n2=45,m=405,
generated by {(1,2),(0,5)}

n1=42,n2=42,m=84,
generated by {(1,8),(0,21)}

Figure 4.6: A small selection of cases where the SDP bound is sharp for larger
grids.
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m PB(A, B) SDPQAP(A, B)
Upper bounds from
simulated annealing

1 -1.514815 0.000000 0.000000
2 -2.125926 0.333319 0.333333
3 -1.833333 1.349939 1.500000
4 -0.637037 2.999892 3.000000
5 1.462963 5.416640 5.666667
6 4.466667 8.599983 8.666667
7 8.374074 12.622685 13.000000
8 13.185185 17.407305 17.600000
9 18.900000 22.937178 23.466667
10 25.518519 29.212957 29.666667
11 33.040741 36.233780 36.666667
12 41.466667 44.000000 44.000000
13 50.796296 53.065277 54.366667
14 61.029630 62.959998 64.666667
15 72.166667 73.687450 75.500000
16 84.207407 85.273263 86.666667
17 97.151852 97.718432 98.666667
18 111.000000 111.000000 111.000000

Table 4.2: The bounds on a 6x6 grid
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m PB(A, B) SDPQAP(A, B)
Upper bounds from
simulated annealing

1 -1.535637 0.000000 0.000000
2 -2.287844 0.333330 0.333333
3 -2.256623 1.243763 1.300000
4 -1.441972 2.723982 2.800000
5 0.156109 4.784851 4.866667
6 2.537619 7.533726 7.800000
7 5.702558 10.916369 10.966667
8 9.650926 15.043550 15.500000
9 14.382724 19.814560 20.366667

10 19.897950 25.325560 25.900000
11 26.196607 31.554779 32.166667
12 33.278692 38.455887 39.033333
13 41.144207 46.029212 46.733333
14 49.793151 54.274568 54.933333
15 59.225525 63.260772 64.433333
16 69.441328 73.172931 74.100000
17 80.440560 83.797024 85.200000
18 92.223221 95.162225 96.600000
19 104.789312 107.298752 109.033333
20 118.138832 120.154716 122.000000
21 132.271782 133.732016 134.866667
22 147.188160 148.029982 150.066667
23 162.887969 163.048746 165.700000
24 179.371206 179.371185 182.266667

Table 4.3: The bounds on a 7x7 grid
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m PB(A, B) SDPQAP(A, B)
Upper bounds from
simulated annealing

1 -1.670238 0.000000 0.000000
2 -2.654762 0.249994 0.250000
3 -2.953571 1.014038 1.133333
4 -2.566667 2.266433 2.266667
5 -1.494048 4.062460 4.233333
6 0.264286 6.435304 6.583333
7 2.708333 9.423375 9.666667
8 5.838095 12.965443 13.000000
9 9.653571 17.078833 17.442857
10 14.154762 21.749475 22.126190
11 19.341667 26.990007 27.628571
12 25.214286 32.848535 33.666667
13 31.772619 39.445606 40.352381
14 39.016667 46.636662 47.350000
15 46.946429 54.421402 54.950000
16 55.561905 62.799758 63.076190
17 64.863095 71.971752 72.921429
18 74.850000 81.768179 83.023810
19 85.522619 92.238774 93.535714
20 96.880952 103.368587 104.300000
21 108.925000 115.126506 116.114286
22 121.654762 127.522322 128.483333
23 135.070238 140.541217 141.719048
24 149.171429 154.193846 155.514286
25 163.958333 168.487184 170.390476
26 179.430952 183.448522 185.711905
27 195.589286 199.055388 201.416667
28 212.433333 215.278915 217.333333
29 229.963095 232.135382 234.083333
30 248.178571 249.661718 251.083333
31 267.079762 267.846258 268.750000
32 286.666667 286.666665 286.666667

Table 4.4: The bounds on a 8x8 grid
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m PB(A, B) SDPQAP(A, B)
Upper bounds from
simulated annealing

1 -1.716889 0.000000 0.000000
2 -2.883429 0.199988 0.200000
3 -3.499619 0.811542 0.904762
4 -3.565460 1.807631 1.809524
5 -3.080952 3.233819 3.333333
6 -2.046095 5.131049 5.233333
7 -0.460889 7.479826 7.700000
8 1.674667 10.307204 10.355556
9 4.360571 13.579004 13.800000

10 7.596825 17.298929 17.433333
11 11.383429 21.467188 21.876190
12 15.720381 26.234485 26.679365
13 20.607683 31.472262 32.029365
14 26.045333 37.183990 37.744444
15 32.033333 43.378553 44.096825
16 38.571683 50.037058 50.736508
17 45.660381 57.183049 57.922222
18 53.299429 64.786226 65.342857
19 61.488825 72.867194 73.285714
20 70.228571 81.428359 81.428571
21 79.518667 90.810097 91.739683
22 89.359111 100.699416 102.068254
23 99.749905 111.093201 112.648413
24 110.691048 121.990693 123.492857
25 122.182540 133.400133 134.938889
26 134.224381 145.304277 146.824603
27 146.816571 157.729721 159.401587
28 159.959111 170.652552 172.295238
29 173.652000 184.080092 185.607937
30 187.895238 198.017798 199.388095
31 202.688825 212.458779 214.014286
32 218.032762 227.417991 228.861111
33 233.927048 242.967654 244.254762
34 250.371683 259.050406 260.466667
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m PB(A, B) SDPQAP(A, B)
Upper bounds from
simulated annealing

35 267.366667 275.649622 277.788889
36 284.912000 292.759839 295.125397
37 303.007683 310.386054 312.823810
38 321.653714 328.520878 331.160317
39 340.850095 347.242354 349.413492
40 360.596825 366.466726 368.701587
41 380.893905 386.186323 389.195238
42 401.741333 406.463567 410.162698
43 423.139111 427.236004 431.381746
44 445.087238 448.524441 452.888889
45 467.585714 470.378907 474.000000
46 490.634540 492.906204 496.033333
47 514.233714 515.926534 518.650000
48 538.383238 539.531651 541.466667
49 563.083111 563.667331 564.800000
50 588.333333 588.332003 588.333333

Table 4.5: The bounds on a 10x10 grid
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5
Optimizing Hypergraph-Based

Polynomials Modeling Job-Occupancy in
Queuing with Redundancy Scheduling

In this chapter we consider the minimization of two classes of polynomials over the
standard simplex. These polynomials have their variables labeled by the edges of
a complete uniform hypergraph and their coefficients are defined in terms of some
cardinality patterns of unions of edges. They arise naturally within the modeling
of job-occupancy in some queuing problems with redundancy scheduling policies
[CBL21]. The question is whether these polynomials attain their minimum value
at the barycenter of the standard simplex, which corresponds to showing optimal-
ity of the uniform distribution for the underlying queuing problem. This chapter
is devoted to this question, which is conjectured to be true by [CBL21]. While
in all the other chapters we use symmetry reduction to reduce the size of a sym-
metric optimization problem, we here use it as a tool to show that a symmetric
polynomial is convex.

93
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5.1 Introduction

We now introduce the classes of polynomials of interest. Given integers n, L ≥ 2
we set V = [n] = {1, . . . , n} and E = {e ⊆ V : |e|= L}, so that (V, E) can be seen as
the complete L-uniform hypergraph on n elements. We set m := |E|= �n

L

�
, where

we omit the explicit dependence on n, L to simplify notation, and we let

∆m =
¦

x = (xe)e∈E ∈ Rm : x ≥ 0,
∑
e∈E

xe = 1
©

denote the standard simplex inRm. The elements of∆m correspond to probability
vectors on m items and the barycenter x∗ = 1

m(1, . . . , 1) of ∆m corresponds to the
uniform probability vector.

Given an integer d ≥ 2 we consider the following m-variate polynomial in the
variables x = (xe : e ∈ E), which is a main player in the chapter:

fd(x) =
∑

(e1,...,ed )∈Ed

d∏
i=1

xei

|e1 ∪ . . .∪ ei|
. (5.1)

So fd is a homogeneous polynomial with degree d. We are interested in the fol-
lowing optimization problem

f ∗d := min
x∈∆m

fd(x),

asking to minimize the polynomial fd over the simplex ∆m. The main conjecture,
which is stated in [CBL21], claims that the minimum is attained at the uniform
probability.

Conjecture 5.1. Given integers n, d, L ≥ 2, is the polynomial fd(x) in (5.1) attains
its minimum over ∆m at the barycenter x∗ of ∆m.

As explained in [CBL21], the motivation for this conjecture comes from its
relevance to a problem in queuing theory, that we will briefly describe in the next
section. In this chapter we are only able to give a partial positive answer to this
conjecture, namely, in the case d = 2 (which follows from Theorem 5.2 below)
and in the case d = 3 and L = 2 (Theorem 5.3 below). As a first step toward
understanding the polynomials fd we investigate a related, easier to analyze, class
of polynomials.

Given an integer d ≥ 2 we consider the following related class of polynomials

pd(x) =
∑

(e1,...,ed )∈Ed

1
|e1 ∪ . . .∪ ed |

xe1
· · · xed

, (5.2)
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which are also homogeneous with degree d. Note that, for degree d = 2, we
have f2 =

1
L p2. For degree d ≥ 3 the polynomials fd have a related, but more

complicated structure than the polynomials pd (see Section 5.4 for more details
on the links between both classes). Here too we may ask whether the minimum
of pd over the standard simplex ∆m is attained at the uniform probability vector
x∗. For the polynomials pd we are able to give a positive answer in the general
case. The following is the first main result of the chapter.

Theorem 5.2. For any integers n, L, d ≥ 2, the global minimum of the polynomial
pd from (5.2) over the standard simplex ∆m is attained at the barycenter x∗ =
1
m(1, . . . , 1) of ∆m.

As noted above, f2 and p2 coincide up to positive scaling, hence, it follows
directly that Question 5.1 has a positive answer in the case d = 2. As a further
partial result we give a positive answer for the case of degree d = 3 and edge size
L = 2. The following is the second main result.

Theorem 5.3. For n ≥ 2, d = 3 and L = 2, the global minimum of the polynomial
fd from (5.1) over the standard simplex ∆m is attained at the barycenter x∗ =
1
m(1, . . . , 1) of ∆m.

As we will see, the analysis of the polynomials fd is technically much more
involved than for the polynomials pd , and we have only partial results so far. In
both cases the key ingredient is showing that the polynomials are convex on the
simplex, i.e., that they have positive semidefinite Hessians at any vector in ∆m. It
turns out that the Hessian of the polynomial pd enters some way as a component of
the Hessian of the polynomial fd . So this forms a natural motivation for the study
of the polynomials pd , though they form a natural class of symmetric polynomials
that are interesting for their own sake.

Exploiting symmetry plays a central role in our proofs. Indeed, the key idea is
to show that the polynomials are convex, which, combined with their symmetry
properties, implies that the global minimum is attained at the barycenter of the
simplex. For this we show that their Hessian matrices are positive semidefinite at
each point of the simplex, which we do through exploiting again their symmetry
structure and links to Terwilliger algebras.

Symmetry is a widely used ingredient in optimization, in particular in semidef-
inite optimization and algebraic questions involving polynomials. We mention
a few landmark examples as background information. Symmetry can indeed
be used to formulate equivalent, more compact reformulations for semidefinite
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programs. The underlying mathematical fact is Artin-Wedderburn theory, which
shows that matrix ∗-algebras can be block-diagonalized (see Theorem 5.7 be-
low). An early well-known example is the linear programming reformulation
from [Sch79] for the Theta number of Hamming graphs, showing the link to the
Delsarte bound and Bose-Mesner algebras of Hamming schemes [Del73; DL98].
Symmetry is used more generally to give tractable reformulations for the semidefi-
nite bounds arising from the next levels of Lasserre’s hierarchy in [Sch05] (which
gives the explicit block-diagonalization for the Terwilliger algebra of Hamming
schemes, see Theorem 5.8 below) and, e.g., in [GST08], [GMS12], [Lau07],
[LPS17]. For more examples and a broad exposition about the use of symmetry in
semidefinite programming we refer, e.g., to [Bac+11; KPS07] and further refer-
ences therein. Symmetry is also a crucial ingredient in the study of algebraic ques-
tions about polynomials, like representations in terms of sums-of-squares, and in
polynomial optimization, as we will explain in detail in Chapter 7. We refer to
[GP04] for a broad exposition and, e.g., to [Rie+13] (for compact reformulations
of Lasserre relaxations of symmetric polynomial optimization problems), [Rie12]
(for methods to reduce the number of variables in programs involving symmetric
polynomials), and the recent works [Ray+18; RST18] (which consider symmetric
polynomials with variables indexed by the k-subsets hypercube (as in our case)
and uncover links with the theory of flag algebras by Razborov [Raz07]).

Example 5.4. As an illustration let us consider the polynomial pd for edge size
L = 2. Given a sequence e = (e1, . . . , ed) ∈ Ed set ce = 1/|e1 ∪ . . . ∪ ed | as a
shorthand for the coefficients in the definition (5.2) of the polynomial pd . So
we need to enumerate the possible configurations of d-tuples of edges, i.e., the
distinct multigraphs with d edges. Note that their number is given by the OEIS
sequence A050535 [OEI99a], which takes the values 1, 3,8, 23,66, 212,686 for
d = 1,2, 3,4, 5,6, 7.

For d = 1, we have p1(x) =
1
2

∑
e∈E xe. For d = 2 we have

p2(x) =
1
2

∑
e∈E

x2
e +

1
3

∑

(e1,e2)∈E2:
|e1∪e2|=3

xe1
xe2
+

1
4

∑

(e1,e2)∈E2:
|e1∪e2|=4

xe1
xe2

.

We show in Figure 5.1 the three possible patterns for pairs of edges e = (e1, e2)
and the corresponding coefficients ce.
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ce =
1
2 ce =

1
3 ce =

1
4

Figure 5.1: The three patterns of pairs of edges in case (d = 2, L = 2)

In the same way, for d ≥ 3, pd(x) =
∑2d

k=2
1
k qd,k(x), where the summand

qd,k(x) is a summation over all d-tuples of edges with a given pattern, depending
on the cardinality of their union:

qd,k(x) =
∑

(e1,...,ed )∈Ed :
|e1∪...∪ed |=k

xe1
· · · xed

.

For the case d = 3 we need to consider the values k = 2,3, 4,5, 6; as an illus-
tration we show in Figure 5.2 all the eight possible patterns of triplets of edges
e = (e1, e2, e3) and the corresponding coefficients ce that contribute to the sum-
mands q3,k.

ce =
1
2 ce =

1
3 ce =

1
3

ce =
1
4 ce =

1
4 ce =

1
4

ce =
1
5 ce =

1
6

Figure 5.2: The eight patterns of triplets of edges in case (d = 3, L = 2)

Organization of the chapter. In the rest of this section we first indicate in Sec-
tion 5.2.1 how the polynomials fd naturally arise within a problem of queuing
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theory with redundancy scheduling policies. After that we present in Section 5.2.2
the main ideas of the proofs, which highly rely on exploiting symmetry properties
of the polynomials. This involves in particular using the Terwilliger algebra of the
binary Hamming cube, so we include some preliminaries about these Terwilliger
algebras in Section 5.2.3.

In Section 5.3 we give the full proof for Theorem 5.2 showing that the poly-
nomials pd attain their global minimum at the barycenter of the simplex and, in
Section 5.4, we investigate the second class of polynomials fd . We prove several
properties of these polynomials, which we use to show Theorem 5.3. We also
present a range of values of (n, d, L) for which the polynomials fd are indeed
convex and thus Conjecture 5.1 is indeed true.

Some notation. Throughout we let I , J denote the identity matrix and the all-ones
matrix, whose size should be clear from the context. When we want to specify the
size we let In (resp. Jn) denote the n× n identity matrix (resp. all-ones matrix)
and, given two integers n, m ≥ 1, Jm,n denotes the m × n all-ones matrix. For a
symmetric matrix A the notation A⪰ 0 means that A is positive semidefinite. Given
two matrices A, B ∈ Rn×n we let A◦B ∈ Rn×n denote their Hadamard product, with
entries (A ◦ B)i j = Ai jBi j for i, j ∈ [n]. It is known that A ⪰ 0 and B ⪰ 0 implies
A◦B ⪰ 0, which follows from the fact that the matrix A◦B is a principal sub-matrix
of the Kronecker product of A and B.

For a sequence α ∈ Nn we set |α| = ∑n
i=1αi and, for an integer d ∈ N, we

set Nn
d = {α ∈ Nn : |α| = d}. Given a vector x ∈ Rn and α ∈ Nn we set xα =

xα1
1 · · · xαn

n . Throughout we let u1, . . . , um denote the standard basis of Rm, where
all entries of ui are 0 except its ith entry which is equal to 1. We let Sn denote the
set of permutations of the set V = [n].

5.2 Preliminaries

In this section we first explain the relevance of the polynomials fd and pd for the
problem from queuing theory considered in [CBL21]. Then we present a sketch
of proof for our main results, and we conclude with some preliminaries about
Terwilliger algebras that we will use in the symmetry reduction.

5.2.1 Motivation

Our motivation for the study of the polynomials pd and fd comes from their rel-
evance to a problem in queuing theory. The question whether they attain their
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minimum at the uniform probability distribution was posed to us by the authors
of [CBL21], who conjecture this to establish a result about the asymptotic behav-
ior of the job occupancy in a parallel-server system with redundancy scheduling
in the light-traffic regime (in contrast to the heavy-traffic regime considered in
[CBL20]). In what follows we will give only a high level sketch of this connec-
tion, and we refer to the paper [CBL21] for a detailed exposition. We also refer
to [CBL21; CBL20] for an extended review of the relevant literature.

A crucial mechanism that has been considered to improve the performance of
parallel-server systems in queuing theory is redundancy scheduling. The key fea-
ture of this policy is that several replicas are created for each arriving job, which
are then assigned to distinct servers (and then, as soon as the first of these repli-
cas completes (or enters) service on a server the remaining ones are stopped).
The underlying idea is that sending replicas of the same job to several servers
will increase the chance of having shorter queuing times. This however must be
weighted against the risk of wastage of capacity. An important question is thus
to assess the impact of redundancy scheduling policies. While most papers in the
literature of redundant scheduling assume that the set of servers to which the
replicas are sent is selected uniformly at random, the paper [CBL21] considers
the case when the set of servers is selected according to a given probability dis-
tribution, and it investigates what is the impact of this probability distribution on
the performance of the system. It is shown there that while the impact remains
relatively limited in the heavy-traffic regime, the system occupancy is much more
sensitive to the selected probability distribution in the light-traffic regime.

We will now only introduce a few elements of the model considered in
[CBL21], so that we can make the link to the polynomials studied in this chapter.
We keep our presentation high level and refer to [CBL21] for details. The setting
is as follows. There are n parallel servers, with average speed µ. Jobs arrive as a
Poisson process of rate nλ for some λ > 0. When a job arrives, L replicas of it are
created that are sent — with probability xe — to a subset e ⊆ [n] of L servers.
Here, L ≥ 2 is an integer and x = (xe)e∈E is a probability distribution on the set
E = {e ⊆ [n] : |e| = L} of possible collections of L servers. As noted in [CBL21]
this can be seen as selecting an edge e ∈ E with probability xe in the uniform
hypergraph (V = [n], E) (with edge size L).

An important performance parameter is the system occupancy at time t, which
is represented by a vector (e1, ...,eM) ∈ EM , where M = M(t) is the total num-
ber of jobs present in the system and ei ∈ E is the collection of servers to which
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the replicas of the ith longest job in the system have been assigned. We need
three modeling assumptions. First one needs to assume suitable stability condi-
tions. Second, all servers should have the same speed µ and, third, the service
requirements of the jobs are assumed to be independent and exponentially dis-
tributed with unit mean. Under these assumptions, the stationary distribution of
the occupancy of the above edge selection is given by

π(e1, . . . , eM ) = C
M∏

i=1

nλxei

µ|e1 ∪ . . .∪ ei|

for some constant C > 0 ([Gar+16], see equation (1) in [CBL21]). Following
[CBL21], let Qλ(x) be a random variable with the stationary distribution of the
system occupancy when the edge selection is given by the probability vector x =
(xe)e∈E . It then follows that, for any integer d ≥ 1, the probability that d jobs are
present in the system is given by

P[Qλ(x) = d] =
∑

(e1,...,ed )∈Ed

π(e1, . . . , ed).

Hence, P[Qλ(x) = 0] = C and

P[Qλ(x) = d] = P[Qλ(x) = 0]
�nλ
µ

�d ∑

(e1,...,ed )∈Ed

d∏
i=1

xei

|e1 ∪ . . .∪ ei|
.

(See equation (7) in [CBL21]). Therefore, P[Qλ(x) = d] is the polynomial fd(x)
(up to a scalar multiple). In [CBL21] the light-traffic regime is considered, i.e.,
when λ ↓ 0, in the case L = 2. By doing a Taylor expansion one can see that

P[Qλ(x) = 0] = 1+ o(1), P[Qλ(x)≥ d] =
�nλ
µ

�d
fd(x) + o(λd)

(see equation (10) in [CBL21]). Therefore, with x∗ = (1, . . . , 1)/|E| denoting the
uniform probability vector, we have

lim
λ↓0
P[Qλ(x∗)≥ d]
P[Qλ(x)≥ d]

= lim
λ↓0

fd(x∗) + o(1)
fd(x) + o(1)

.

Hence, if the polynomial fd attains its minimum at the uniform distribution x∗,
then one has

lim
λ↓0
P[Qλ(x∗)≥ d]
P[Qλ(x)≥ d]

≤ 1.
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If this holds for each d, this indicates that in the light-traffic regime the system
occupancy is minimized when selecting the assignments to the servers of the job
replicas uniformly at random. This thus motivates Conjecture 5.1 stating that the
polynomial fd attains its minimum over the probability simplex at the uniform
point x∗.

5.2.2 Sketch of Proof

Here we give a sketch of proof for our main results. We start with indicating the
main steps for proving Theorem 5.2, dealing with the (simpler) class of polyno-
mials pd and after that we briefly indicate how to deal with the polynomials fd .

A first easy observation is that in order to show that the polynomial pd attains
its minimum at the barycenter of the standard simplex∆m it suffices to show that
pd is convex over∆m. This follows from a symmetry argument, namely we exploit
the fact that the polynomial pd is invariant under the permutations of the edge
set E that are induced by permutations of [n].

Lemma 5.5. Assume the polynomial pd is convex on the simplex∆m. Then the point
x∗ = (1/m)(1, . . . , 1) ∈∆m is a global minimizer of pd over ∆m.

Proof. The key fact we use is that the polynomial pd enjoys some symmetry prop-
erty; namely, for any tuple (e1, . . . , ed) ∈ Ed , the coefficient of the monomial
xe1
· · · xed

in pd is 1/|e1∪ . . .∪ ed |, which depends only on the cardinality of the set
e1∪. . .∪ed . Recall that E = {e ⊆ V = [n] : |e|= L}. Any permutationσ ∈ Sn of [n]
induces a permutation of E (still denoted σ) by setting σ(e) = { jσ(1), . . . , jσ(L)}
for e = { j1, . . . , jL} ∈ E. In turn, σ acts on ∆m by setting σ(x) = (xσ(e))e∈∆m

for x = (xe)e∈E ∈ ∆m. We now observe that pd is invariant under this action of
permutations σ ∈ Sn. Indeed, for any σ ∈ Sn, we have

σ(pd)(x) = pd(σ(x)) =
∑
(e1,...,ed )∈Ed

1
|e1∪...∪ed | xσ(e1) · · · xσ(ed )

=
∑
( f1,..., fd )∈Ed

1
|σ−1( f1)∪...∪σ−1( fd )| x f1 · · · x fd

=
∑
( f1,..., fd )∈Ed

1
| f1∪...∪ fd | x f1 · · · x fd

= pd(x).

Let x ∈ ∆m be a global minimizer of pd . For any permutation σ ∈ Sn the per-
muted point σ(x) belongs to∆m and pd(x) = pd(σ(x)) holds. Hence, for the full
symmetrization of x ,

x∗ :=
1
n!

∑
σ∈Sn

σ(x),
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we have x∗ ∈∆m and all its entries are equal, so that x∗ = 1
m(1, . . . , 1). Moreover,

as the polynomial pd is convex over ∆m, we have:

pd(x
∗)≤ 1

n!

∑
σ∈Sn

pd(σ(x)) = pd(x).

This shows that x∗ is again a global minimizer of pd in ∆m. As x∗ = 1
m(1, . . . , 1),

the proof is complete.

Therefore, we are left with the task of showing that the polynomial pd is con-
vex over the simplex ∆m or, equivalently, that its Hessian matrix

H(pd)(x) = (∂
2pd(x)/∂ xe∂ x f )e, f ∈E

is positive semidefinite over ∆m. This forms the core technical part of the proof.
Here is a rough sketch of our proof technique.

A first step is to express the Hessian matrix of pd as a matrix polynomial,
involving a collection of matrices Mγ, which (up to positive scaling) are the coef-
ficients of the Hessian H(pd) in the monomial basis; see Lemma 5.11. The next
step is to show that each of the matrices Mγ appearing in this decomposition of the
Hessian is positive semidefinite. For this, one first reduces to the task of showing
that a certain set of well-structured matrices are positive semidefinite, see Lemma
5.12 and Lemma 5.13. After that, this last task is done by showing that these
matrices lie in the Terwilliger algebra of the Hamming cube, which enables us to
exploit its explicitly known block-diagonalization. The proof is then concluded by
using an integral representation argument, see Section 5.3.3.

The treatment for the polynomials fd has the same starting point: the polyno-
mial fd is invariant under any permutation of the edge set E induced by permu-
tations of [n], and thus it suffices to show that fd is convex in order to conclude
that it attains its global minimum at the barycenter of the simplex (i.e., the ana-
logue of Lemma 5.5 holds for fd). After that we again express the Hessian matrix
H( fd) as a matrix polynomial, involving a collection of matrices Qγ that occur
as its coefficients in the monomial basis; see Lemma 5.18. Hence, here too, the
task boils down to showing that each of these matrices Qγ is positive semidefi-
nite. This task turns out to be considerably more difficult than for the matrices
Mγ which occurred in the analysis of the polynomial pd . As a first step toward the
analysis of the matrices Qγ we give a recursive reformulation for them, which also
makes apparent how the matrices Mγ enter their definition (namely as a factor
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of a Hadamard product definition of Qγ); see Lemma 5.21. Based on this we can
show that the matrices Qγ are indeed positive semidefinite in the case d = 3 and
L = 2, thus showing Theorem 5.3; see Section 5.4.2.

5.2.3 Preliminaries on the Terwilliger Algebra

As mentioned above we need to exploit the symmetry structure of the polynomial
pd in order to show that its Hessian matrix is positive semidefinite. A crucial in-
gredient will be that the Hessian matrix can be decomposed into matrices that
(after some reduction steps) all lie in the Terwilliger algebra of the binary Ham-
ming cube. We begin with introducing the definition of the Terwilliger algebra An

of the binary Hamming cube on n elements.

Definition 5.6 (Terwilliger algebra of the binary Hamming cube). Let Pn de-
note the collection of all subsets of the set V = [n]. For every triple of nonnegative
integers i, j, t we define the 2n × 2n matrix Dt

i, j , indexed by Pn, with entries

�
Dt

i, j

�
S,T
=

(
1 i f |S|= i, |T |= j, |S ∩ T |= t,

0 else
,

for sets S, T ∈ Pn. Then the Terwilliger algebra of the binary Hamming cube, de-
noted by An, is defined as the (real) span of all these matrices:

An =
¦ ∑

i, j,t≥0

x t
i, j D

t
i, j : x t

i, j ∈ R
©

.

It is easy to see that An is a matrix ∗-algebra, i.e., An is closed under taking
linear combinations, matrix multiplications and transposition. One way to see
this is by realizing that the matrices Dt

i, j are exactly the indicator matrices of the
orbits of pairs in Pn × Pn under the element-wise action of the symmetric group
Sn.

All matrix ∗-algebras can be block-diagonalized by Artin-Wedderburn theory
(see [Wed34], see also [BEK78] for a proof).

Theorem 5.7 (Artin-Wedderburn). Let A be a matrix ∗-algebra. Then there exist
nonnegative integers d and m1, . . . , md and a ∗-algebra isomorphism

ϕ : A→
d⊕

k=1

Cmk×mk .
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The important property here is that ϕ is an algebra isomorphism. Hence, we
know that this isomorphism maintains positive semidefiniteness: for any matrix
A∈A, we have A⪰ 0⇐⇒ ϕ(A)⪰ 0. Moreover, the matrix ϕ(A) is block-diagonal,
with d diagonal blocks of sizes m1, . . . , md . This is a crucial property which can be
exploited in order to get a more efficient way of encoding positive semidefiniteness
of matrices in A.

The explicit block-diagonalization of the Terwilliger algebra An was given by
Schrijver [Sch05].

Theorem 5.8 (Schrijver [Sch05]). The Terwilliger algebra An can be block-
diagonalized into ⌊ n

2 ⌋ + 1 blocks, of sizes mk = n − 2k + 1 for k = 0, . . . , ⌊ n
2 ⌋.

The algebra isomorphism ϕ sends the matrix

A=
n∑

i, j,t=0

x t
i, j D

t
i, j

to the block-matrix ϕ(A) = ⊕⌈n/2⌉k=0 Bk, where the matrix Bk ∈ Rmk×mk is given by

Bk :=

��
n− 2k
i − k

�− 1
2
�

n− 2k
j − k

�− 1
2 ∑

t

β t
i, j,k x t

i, j

�n−k

i, j=k

(5.3)

for k = 0,1, . . . , ⌊ n
2 ⌋. Here, for any nonnegative integers i, j, t, k, we set

β t
i, j,k :=

n∑
ℓ=0

(−1)ℓ−t
�
ℓ

t

��
n− 2k

n− k− ℓ
��

n− k− ℓ
i − ℓ

��
n− k− ℓ

j − ℓ
�

. (5.4)

In particular, we have

n∑
i, j,t=0

x t
i, j D

t
i, j ⪰ 0⇐⇒ Bk ⪰ 0 for k = 0, 1, . . . , ⌊n

2
⌋. (5.5)

5.3 Proof of Theorem 5.2

In this section we give the proof of Theorem 5.2. As a warm-up we start with the
special case when the degree is d = 2 and the edge size is L = 2, where we can
easily show that the polynomial p2 is convex.

After that we proceed to the general case. We follow the steps as sketched
earlier. First we express the Hessian matrix of pd as a matrix polynomial, so that
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it suffices to show that a set of matrices are positive semidefinite; namely the ma-
trices Mγ in (5.11) for any γ ∈ Nm

d−2, which are (up to scaling) the coefficients of
H(pd) in the monomial basis. After that we indicate some reductions that lead to
the task of showing that another set of smaller, well-structured matrices are posi-
tive semidefinite; namely the matrices Mp in (5.15) for any integer p ≤ L(d − 2).
Finally, we show the positive semidefiniteness of these matrices Mp by exploiting
a link to the Terwilliger algebra of the Boolean Hamming cube.

5.3.1 The Case d = 2 and L = 2

Here we consider the polynomial

p2(x) =
∑

e, f ∈E

1
|e ∪ f | xe x f ,

where E = {e ⊆ [n] : |e|= 2}. We show that the polynomial p2 is convex over the
standard simplex or, equivalently, that its Hessian matrix is positive semidefinite
over ∆m. Here, the Hessian matrix of p2 is given by H(p2) = 2M , where M is the
matrix indexed by E with entries

Me, f =
1

|e ∪ f | for e, f ∈ E. (5.6)

Consider the matrices A2, A3, A4 indexed by E, with entries

(As)e, f = 1 if |e ∪ f |= s, (As)e, f = 0 otherwise, for s = 2, 3,4.

Then, we have A2 = I and A2+A3+A4 = J . Clearly we can express the matrix M
as a linear combination of these matrices:

M =
1
2

I +
1
3

A3 +
1
4

A4 =
1
4

I +
1
12

A3 +
1
4

J =
1

12
I +

1
4

J +
1
12
(A3 + 2I). (5.7)

We can now conclude that M ⪰ 0 (and thus the polynomial p2 is convex) in view
of the next lemma, which claims that A3 + 2I ⪰ 0.

Lemma 5.9. Consider the
�n

2

�×n matrix Γn, with entries (Γn)e,i = |e∩{i}| for e ∈ E
and i ∈ [n]. Then A3 + 2I = ΓnΓ T

n ⪰ 0.

Proof. Direct verification.

Note that the matrices A2 = I , A3, A4 generate the Bose-Mesner algebra of the
Johnson scheme Jn

2 , with length n and weight 2, and thus the matrix M belongs
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to this Bose-Mesner algebra (see [DL98] for details on the Johnson scheme). For
arbitrary degree d ≥ 3 and edge size L = 2 one could proceed to show that the
Hessian matrix of pd is convex by using a similar symmetry reduction based on the
Bose-Mesner algebra of the Johnson scheme J p

2 for suitable values of p. However,
for general edge size L ≥ 3 we will need to use a richer algebra, namely the
Terwilliger algebra of the Hamming cube. Hence, we will treat in the rest of the
section the general case d ≥ 2 and L ≥ 2.

5.3.2 Computing the Hessian Matrix of pd

In this section we indicate how to compute the Hessian matrix of the polynomial

pd(x) =
∑

(ei1 ,...,eid
)∈Ed

1
|ei1 ∪ . . .∪ eid |

xei1
· · · xeid

, (5.8)

where, as before, E = {e ⊆ V = [n] : |e| = L} with L ≥ 2. We begin with getting
the explicit coefficients of the polynomial pd expressed in the standard monomial
basis. The basic fact we will now use is that the coefficients depend only on the
set of distinct edges that are present in the tuple (ei1 , . . . , eid ) ∈ Ed and not on
their multiplicities.

To formalize this, recall m= |E| and let us label the edges as e1, . . . , em so that
E = {e1, . . . , em}. For a d-tuple e := (ei1 , . . . , eid ) ∈ Ed with i1, . . . , id ∈ [m], define
the sequence α(e) ∈ Nm, where, for ℓ ∈ [m], α(e)ℓ is the number of indices among
i1, . . . , id that are equal to ℓ. Then we have:

xei1
· · · xeid

= x
α(e)1
e1
· · · xα(e)mem

= xα(e)

and |α(e)| = d so that α(e) ∈ Nm
d . This justifies the following definition. For

α ∈ Nm
d , consider a d-tuple e = (ei1 , . . . , eid ) ∈ Ed such that α(e) = α and define

cα :=
1

|ei1 ∪ . . .∪ eid |
. (5.9)

As an example, for d = n = m = 3, if α = (1, 0,2) then cα =
1

|e1∪e3| and if α =

(2, 0,1) then we also have cα =
1

|e1∪e3| .
We can now reformulate the polynomial pd in the (usual) monomial basis.

Lemma 5.10. The polynomial pd from (5.8) can be reformulated as follows:

pd(x) =
∑
α∈Nm

d

cα
d!
α!

xα, (5.10)

setting α!= α1! · · ·αm! and where cα is as defined in (5.9).
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Proof. Using the definition of the coefficients cα, we can rewrite pd as

pd(x) =
∑
α∈Nm

d

� ∑

e=(ei1 ,...,eid
)∈Ed :

α(e)=α

1
|ei1 ∪ . . .∪ eid |

�
xα =

∑
α∈Nm

d

� ∑

e∈Ed :α(e)=α

cα
�

xα,

which is equal to
∑
α∈Nm

d
cα

d!
α! xα. Here, for this last equality, we use the monomial

theorem, which claims the identity

� m∑
i=1

x i

�d

=
∑
α∈Nm

d

d!
α!

xα,

or, equivalently, that the number of d-tuples e ∈ Ed for which α(e) = α is equal to
d!/α!.

We now proceed to compute the Hessian matrix of pd .

Lemma 5.11. The Hessian of the polynomial pd is the matrix

H(pd)(x) =
� ∂ 2pd(x)
∂ xei

∂ xe j

�m

i, j=1
=

∑
γ∈Nm

d−2

d!
γ!

xγMγ,

where, for any γ ∈ Nm
d−2, we set

Mγ = (cγ+ui+u j
)mi, j=1 (5.11)

and where the vectors u1, . . . , um ∈ Rm denote the standard basis of Rm.

Proof. The partial derivatives of pd are

∂ pd(x)
∂ xei

=
∑

α∈Nm
d :αi≥1

d!
(α− ui)!

cαxα−ui =
∑
β∈Nm

d−1

d!
β!

cβ+ui
xβ .

Similarly, we see that

∂ 2p(x)
∂ xe j

∂ xei

=
∑

β∈Nm
d−1:β j≥1

d!
(β − u j)!

cβ+ui
xβ−u j =

∑
γ∈Nm

d−2

cγ+ui+u j

d!
γ!

xγ.

This concludes the proof.
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Hence, if we can show that the matrices Mγ in (5.11) are all positive semidef-
inite then it follows directly that the Hessian matrix of pd is positive semidefinite
on the standard simplex. In the rest of this section we indicate two successive
simplifications that reduce the task of checking positive semidefiniteness of the
matrices Mγ (for γ ∈ Nm

d−2) to the same task for a smaller set of simpler matri-
ces: first for the matrices MW (for W ⊆ V ), and second for the matrices Mp (for
0 ≤ p ≤ n integer). In Section 5.3.3 we will make a final reduction to show that
the matrices Mp are positive semidefinite, exploiting the fact that they belong to
Terwilliger algebras.

We begin with the first reduction. For γ ∈ Nm, define its support as the set
Sγ = {e ∈ E : γe ≥ 1} and let

Wγ =
⋃
e∈Sγ

e

denote the subset of elements of V = [n] that are covered by some edge in the
support of γ. Then, for any i, j ∈ [m], the support of γ+ui+u j is the set Sγ∪{ei , e j},
and we have

(Mγ)ei ,e j
= cγ+ui+u j

=
1

|Wγ ∪ ei ∪ e j|
.

Hence, the matrix Mγ depends only on the set Wγ (and not on the specific choice
of the sequence γ). This justifies defining the matrices

MW =
� 1
|W ∪ e ∪ f |

�
e, f ∈E

(5.12)

for any set W ⊆ V = [n]. Hence, for any γ ∈ Nm
d−2, we have:

Mγ = MWγ . (5.13)

Summarizing, we have shown:

Lemma 5.12. Assume that the matrices MW from (5.12) are positive semidefinite
for all W ⊆ V with |W | ≥ L (if d ≥ 3) and |W | ≤ L(d −2). Then the polynomial pd

is convex over the standard simplex.

If d = 2 then there is only one matrix to check, namely the matrix M; (for
W = ;). Note that the matrix M; coincides with the matrix in (5.6), so we already
know that it is positive semidefinite when L = 2. However, if d ≥ 3, then one
needs to check all the matrices of the form MW in (5.12).
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Now comes the second reduction, which will be useful to link these matrices
MW to the Terwilliger algebra. We observe that in the matrix MW there are iden-
tical rows and columns and the reduction consists simply in removing duplicate
rows and columns in MW and keeping just one copy. For this set p := |W | and
U := V \W , so that |U |= n− p. In addition, set

F := {e \W : e ∈ E}= {e ⊆ U : L − p ≤ |e| ≤ L}, (5.14)

which consists of the intersections with U of the edges in E. Then, F = E when
p = 0 and the condition |e| ≥ L − p is redundant when p ≥ L. Now we consider
the following matrix Mp, which is indexed by F , with entries

(Mp)e, f =
1

p+ |e ∪ f | for e, f ∈ F. (5.15)

Note that for p = 0 the matrix M0 coincides with the matrix M; in (5.12) (and
with the matrix in (5.6)). The next lemma links the matrices MW and Mp and
relies on showing that Mp is obtained from MW by deleting duplicate rows and
columns.

Lemma 5.13. Let L ≥ 2 and d ≥ 2. Consider the matrices MW in (5.12) and Mp

in (5.15). The following assertions are equivalent:

(i) MW ⪰ 0 for all W = e1 ∪ . . .∪ ed−2 with e1, . . . , ed−2 ∈ E.

(ii) Mp ⪰ 0 for all p ≤ L(d − 2) such that p ≥ L if d ≥ 3.

Proof. If d = 2 then the result holds since M0 = M; as observed above. So assume
now d ≥ 3. Let W = e1 ∪ . . . ∪ ed−2, where e1, . . . , ed−2 ∈ E, and set p = |W |.
Consider the partition of the set E into E = ∪L

i=0Ei , where Ei = {e ∈ E : |e\W |= i}.
With respect to this partition of its index set, the matrix MW has the following
block-form:

MW =




M0,0
W M0,1

W · · · M0,L
W

M1,0
W M1,1

W · · · M1,L
W

...
...

. . .
...

M L,0
W M L,1

W · · · M L,L
W


 ,

where the block M i, j
W has its rows indexed by Ei and its columns by E j . Note that,

if two edges e, e′ ∈ E satisfy e \W = e′ \W , then the two rows of MW indexed by
e and e′ coincide: for any f ∈ E we have

(M i, j
W )e, f =

1
|W |+ |(e ∪ f ) \W | =

1
|W |+ |(e′ ∪ f ) \W | = (M

i, j
W )e′, f .
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In fact, after removing these duplicate rows (and columns) and keeping only one
copy for each subset of U = V \W , we obtain the matrix




M0,0
p M0,1

p · · · M0,L
p

M1,0
p M1,1

p · · · M1,L
p

...
...

. . .
...

M L,0
p M L,1

p · · · M L,L
p




,

which coincides with the matrix Mp in (5.15). Indeed, the above matrix is indexed
by the set F in (5.14) and its block-form is with respect to the partition F = ∪L

i=0Fi ,
where Fi = {e ⊆ U : |e| = i}. So the block M i, j

p has its rows indexed by Fi , its
columns indexed by F j , and its entries are

(M i, j
p )e, f =

1
p+ |e ∪ f | =

1
p+ i + j − |e ∩ f | for e ∈ Fi , f ∈ F j . (5.16)

As the matrices Mp arise from MW by removing its duplicate rows and columns
it is clear that the matrices MW are positive semidefinite if and only if the same
holds for the matrices Mp. This concludes the proof.

In the next section we show that the matrices Mp are positive semidefinite for
all 0≤ p ≤ n by exploiting their link to Terwilliger algebras.

5.3.3 The General Case d ≥ 2 and L ≥ 2

In Section 5.2.3 we gave preliminary results on the Terwilliger algebra, which we
will now use to prove that the matrices Mp in (5.15) are positive semidefinite. Fix
an integer 0 ≤ p ≤ n and consider the matrix Mp in (5.15), which has a block-
form with blocks as in (5.16). We start with observing that Mp belongs to the
Terwilliger algebra An−p. This is clear since relation (5.16) provides the explicit

correspondence between the blocks M i, j
p of Mp and the generating matrices Dt

i, j
of the algebra An−p:

Mp =
L∑

i=0

L∑
j=0

min{i, j}∑
t=0

1
p+ i + j − t

Dt
i, j =

L∑
i=0

L∑
j=0

min{i, j}∑
t=0

x t
i, j D

t
i, j ,

after setting

x t
i, j =

1
p+ i + j − t

. (5.17)
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Let Bk be the corresponding matrices from (5.3) (replacing n by n− p). Then, in
view of Theorem 5.8, we know that Mp ⪰ 0 if and only if Bk ⪰ 0 for all 0 ≤ k ≤
⌊(n− p)/2⌋.

In what follows p, k are fixed integers. We now proceed to show that Bk ⪰ 0.
To simplify the notation we introduce the following parameters

a(i) :=
�

n− p− 2k
i − k

�− 1
2

, b(ℓ, i) :=
�

n− p− k− ℓ
i − ℓ

�
, c(ℓ) :=

�
n− p− 2k

n− p− k− ℓ
�

for any integers i,ℓ. Note that we may omit the obvious bounding conditions on
i and ℓ since the corresponding parameters are zero if these conditions are not
satisfied; for instance, a(i) = 0 if i < k and b(ℓ, i) = 0 if ℓ > i. Then we have

Bk =

 
a(i)a( j)

min{i, j}∑
t=0

β t
i, j,k x t

i, j

!n−p−k

i, j=k

(5.18)

and

β t
i, j,k :=

n−p∑
ℓ=0

(−1)ℓ−t
�
ℓ

t

�
c(ℓ)b(ℓ, i)b(ℓ, j). (5.19)

We now give an integral reformulation for the entries of the matrix Bk from (5.18).
It is based on the fact that

1
i
=

∫ 1

0

z i−1dz for any integer i ≥ 1, (5.20)

which permits to give an integral reformulation for the scalars x t
i, j in (5.17). This

simple but powerful fact will be very useful to show Bk ⪰ 0. Note that this is
similar to the classical argument used by Hilbert [Hil94] to show that the Hilbert
matrix ( 1

i+ j−1)
n
i, j=1 is positive semidefinite for any n ∈ N.

Lemma 5.14. We have

min{i, j}∑
t=0

β t
i, j,k x t

i, j =
min{i, j}∑
ℓ=0

c(ℓ)b(ℓ, i)b(ℓ, j)

∫ 1

0

g(ℓ, z)z i+ jdz,

where we define the function g(ℓ, z) = zp−1(1−z
z )
ℓ for z ∈ (0, 1].
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Proof. First we use the expressions of β t
i, j,k in (5.19) and of x t

i, j in (5.17) and we
exchange the summations in t and ℓ to obtain

min{i, j}∑
t=0

β t
i, j,k x t

i, j =
min{i, j}∑
ℓ=0

� ℓ∑
t=0

1
p+ i + j − t

(−1)ℓ−t
�
ℓ

t

��
c(ℓ)b(ℓ, i)b(ℓ, j). (5.21)

Now we use (5.20), which gives the following integral representation

1
p+ i + j − t

=

∫ 1

0

zp+i+ j−t−1dz.

Using this integral representation (and the binomial theorem for the equality
marked (*) below) we can reformulate the inner summation appearing in (5.21)
as follows:

ℓ∑
t=0

1
p+ i + j − t

(−1)ℓ−t
�
ℓ

t

�
=

ℓ∑
t=0

(−1)ℓ−t
�
ℓ

t

�∫ 1

0

zp+i+ j−t−1dz

=

∫ 1

0

zp+i+ j−1(−1)ℓ
�
ℓ∑

t=0

�
−1

z

�t �ℓ
t

��
dz

(∗)
=

∫ 1

0

zp+i+ j−1(−1)ℓ
�

1− 1
z

�ℓ
dz

=

∫ 1

0

zp+i+ j−1(−1)ℓ
�

z − 1
z

�ℓ
dz

=

∫ 1

0

zp−1
�

1− z
z

�ℓ
z i+ jdz.

This concludes the proof.

We can now proceed to show that the matrices Bk in (5.18) are positive
semidefinite.

Lemma 5.15. We have Bk ⪰ 0.

Proof. We use Lemma 5.14 to reformulate the matrix Bk. First, note that in the
result of Lemma 5.14, since b(ℓ, i)b(ℓ, j) = 0 if ℓ >min{i, j}, we may replace the
summation on ℓ from 0≤ ℓ≤min{i, j} to 0≤ ℓ≤ n− p. This implies:

Bk =
�
a(i)a( j)

n−p∑
t=0

β t
i, j,k x t

i, j

�n−p−k

i, j=k
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=

∫ 1

0

� n−p∑
ℓ=0

g(ℓ, z)c(ℓ) (z ia(i)b(ℓ, i))︸ ︷︷ ︸
=:h(ℓ,z,i)

(z ja( j)b(ℓ, j))︸ ︷︷ ︸
=:h(ℓ,z, j)

�n−p−k

i, j=k
dz

=
n−p∑
ℓ=0

∫ 1

0

g(ℓ, z)c(ℓ)
�
h(ℓ, z, i)h(ℓ, z, j)

�n−p−k

i, j=k︸ ︷︷ ︸
=:H(ℓ,z,k)

dz

=
∑
ℓ≥0

∫ 1

0

g(ℓ, z)c(ℓ)︸ ︷︷ ︸
≥0

H(ℓ, z, k)︸ ︷︷ ︸
⪰0

dz ⪰ 0.

Here we used the fact that, for any ℓ ∈ [0, n−p], the function g(ℓ, z) is nonnegative
on (0,1] and that the matrix H(ℓ, z, k) is positive semidefinite for any z ∈ [0,1]
since it is the outer product of the vector (h(ℓ, z, i))n−p−k

i=k with itself.

Therefore, we have shown that the matrices Bk are positive semidefinite and
thus the following result.

Corollary 5.16. The matrices Mp from (5.15) are positive semidefinite for all 0 ≤
p ≤ n.

In view of Lemmas 5.12 and 5.13 we can conclude that the polynomial pd is
convex on ∆m, which concludes the proof of Theorem 5.2.

5.4 Investigating the Polynomials fd

Here we consider the second class of polynomials fd from (5.1), namely

fd(x) =
∑

(e1,...,ed )∈Ed

d∏
i=1

xei

|e1 ∪ . . .∪ ei|
.

We address Conjecture 5.1, which states that fd attains its minimum value on the
simplex ∆m at the barycenter of ∆m. Here too, the conjecture follows if one can
show that fd is convex over ∆m, as the analogue of Lemma 5.5 extends easily
for the polynomial fd . We conjecture that convexity holds in general, which is a
stronger conjecture than Conjecture 5.1, and is not necessary to prove Conjecture
5.1.

Conjecture 5.17. For any integers n, L, d ≥ 2 the polynomial fd is convex over
the simplex ∆m.
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For degree d = 2, we have f2 =
1
L p2, and thus we know from Theorem 5.2 that

f2 is convex. We will prove in Section 5.4.2 that Conjecture 5.17 holds for degree
d = 3 and edge size L = 2 and, in Section 5.4.3 and Appendix A, we will give a
range of values for (n, L, d) that were numerically tested and support Conjecture
5.17.

In what follows we begin in Section 5.4.1 with giving a polynomial matrix
decomposition for the Hessian of fd . Hence, convexity of fd over∆m follows if we
can show that a family of well-structured matrices Qγ, arising as the coefficients of
H( fd) in the monomial basis, are positive semidefinite (see Lemmas 5.18). Then
we give a recursive reformulation for the matrices Qγ, which makes apparent some
links to the matrices Mγ arising in the Hessian of pd (see Lemma 5.21). Using this
reformulation we can show positive semidefiniteness of the matrices Qγ in the
case d = 3 and L = 2 (see Section 5.4.2). However, understanding the general
case is technically involved and would require developing new tools for exploiting
the symmetry structure present in the matrices Qγ (which is now not captured by
the Terwilliger algebra). This goes beyond the scope of this chapter, and we leave
it for further research. In very recent work Polak [Pol22] has carried out this
symmetry reduction, which enables him to show that Conjecture 5.17 holds in
the case when d ≤ 8 and L = 2.

5.4.1 Computing the Hessian of fd

We begin with expressing the polynomial fd in the standard monomial basis:

fd(x) =
∑
α∈Nm

d

xα
∑

e=(e1,...,ed )∈Ed

α(e)=α

d∏
i=1

1
|e1 ∪ . . .∪ ei|

=
∑
α∈Nm

d

bαxα, (5.22)

where we set

bα =
∑

e=(e1,...,ed )∈Ed

α(e)=α

d∏
i=1

1
|e1 ∪ . . .∪ ei|

. (5.23)

Next we compute the Hessian of fd and we give a matrix polynomial reformulation
for it.

Lemma 5.18. The Hessian of the polynomial fd is given by

∂ 2 f (x)
∂ xei

∂ xe j

=

¨ ∑
γ∈Nm

d−2
(γi + 1)(γ j + 1)xγbγ+ui+u j

if i ̸= j,∑
γ∈Nm

d−2
(γi + 1)(γi + 2)xγbγ+2ui

if i = j,
,
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where, as before, u1, . . . , um denote the standard basis of Rm. In other words,

H( fd)(x) =
∑
γ∈Nm

d−2

xγQγ,

where, for γ ∈ Nm
d−2, we define the symmetric m×m matrix Qγ with entries

(Qγ)i j = (γi + 1)(γ j + 1)bγ+ui+u j
if i ̸= j, (Qγ)ii = (γi + 1)(γi + 2)bγ+2ui

(5.24)

for i, j ∈ [m]. Hence, H( fd)(x)⪰ 0 for all x ∈∆m if Qγ ⪰ 0 for all γ ∈ Nm
d−2.

Proof. Direct verification.

We now give a recursive reformulation for the coefficients of the polynomial
fd and for its Hessian matrix, that may be helpful for a proof by induction. Recall
the definition of the coefficients bα of fd in (5.23). Fix α ∈ Nm

d . There are d!
α!

distinct tuples e such that α(e) = α. For any such sequence e = (ei1 , . . . , eid )
with i1, . . . , id ∈ [m], α = α(e) means that, for any ℓ ∈ [m], αℓ is the number of
occurrences of ℓ within the multiset {i1, . . . , id}; so αℓ ≥ 1 if ℓ ∈ {i1, . . . , id} and
αℓ = 0 if ℓ ̸∈ {i1, . . . , id}. For instance, for e = (e1, e2, e3, e2, e1), d = 5, m = 4, we
have (i1, . . . , i5) = (1,2, 3,2, 1) and α(e) = (2, 2,1, 0).

To reformulate bα we exploit the fact that bα enjoys some invariance property
under permutations of [d], namely

bα =
∑

e=(ei1 ,...,eid
)∈Ed :

α(e)=α

d∏
k=1

1
|ei1 ∪ . . .∪ eik |

=
1
d!

∑
σ∈Sd

∑

e=(ei1 ,...,eid
)∈Ed :

α(e)=α

d∏
k=1

1
|eiσ(1) ∪ . . .∪ eiσ(k) |

=
1
d!

∑

e=(ei1 ,...,eid
)∈Ed

α(e)=α

∑
σ∈Sd

d∏
k=1

1
|eiσ(1) ∪ . . .∪ eiσ(k) |︸ ︷︷ ︸

=:S

. (5.25)

Observe that the inner summation S in (5.25) does not depend on the choice of
the sequence e such that α(e) = α; thus we may consider it fixed, denoted as
(ei1 , . . . , eid ). Since there are d!

α! possible choices for selecting this sequence, using
relation (5.25) we can reformulate bα as follows:

bα =
1
d!

d!
α!

∑
σ∈Sd

d∏
k=1

1
|eiσ(1) ∪ . . .∪ eiσ(k) |

=
1
α!

∑
σ∈Sd

d∏
k=1

1
|eiσ(1) ∪ . . .∪ eiσ(k) |

.
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Next we pull out the factor 1
|ei1∪...∪eid

| = cα which occurs for k = d and get

bα =
cα
α!

d∑
r=1

∑
σ∈Sd :σ(d)=r

d−1∏
k=1

1
|eiσ(1) ∪ . . .∪ eiσ(k) |

=
cα
α!

d∑
r=1

bα−uir
(α− uir )!

= cα

d∑
r=1

bα−uir

αir

(∗)
= cα

∑
k∈[m]:αk≥1

bα−uk
.

Here, in the last equality marked (*), we use the fact that αk of the elements in
the multiset {i1, . . . , id} are equal to k. Summarizing we have shown:

Lemma 5.19. For any α ∈ Nm
d we have

bα = cα
∑

k∈[m]:αk≥1

bα−uk
.

We now proceed to give a recursive reformulation for the matrices Qγ in
(5.24). First we reformulate them using the scaled parameters

bbα := α! bα, (5.26)

which satisfy the recursive relation:

bbα = cα
∑

k:αk≥1

αk
bbα−uk

. (5.27)

Indeed, by Lemma 5.19 we have

bbα = α! bα = α! cα
∑

k:αk≥1

bα−uk
= α! cα

∑
k:αk≥1

bbα−uk

α− uk!
= cα

∑
k:αk≥1

αk
bbα−uk

.

Lemma 5.20. For any γ ∈ Nm
d−2 we have Qγ =

1
γ!(bbγ+ui+u j

)mi, j=1.

Proof. Direct verification: for i ̸= j we have (Qγ)i j = (γi + 1)(γ j + 1)bγ+ui+u j
=

bbγ+ui+u j
(γi+1)(γ j+1)/(γ+ui+u j)!= bbγ+ui+u j

/γ! and, for i = j, we have (Qγ)ii =

(γi + 1)(γi + 2)bγ+2ui
= bbγ+2ui

(γi + 1)(γi + 2)/(γ+ 2ui)!= bbγ+2ui
/γ!.



Chapter 5. Optimizing Hypergraph-Based Polynomials from Queuing Theory 117

Lemma 5.21. For d ≥ 3 and γ ∈ Nm
d−2 we have

Qγ = (cγ+ui+u j
)mi, j=1︸ ︷︷ ︸

Mγ

◦
� ∑

k∈[m]:γk≥1

Qγ−uk
+

1
γ!
(bbγ+ui

+bbγ+u j
)mi, j=1

︸ ︷︷ ︸
=:Rγ

�

= Mγ ◦
� ∑

k∈[m]:γk≥1

Qγ−uk
+ Rγ

�
,

where the matrices Mγ were introduced in (5.11).

Proof. Combining Lemmas 5.19 and 5.21 we obtain

(Qγ)i j =
1
γ!
bbγ+ui+u j

=
1
γ!

cγ+ui+u j

∑
k:(γ+ui+u j)k≥1

bbγ+ui+u j−uk
(γ+ ui + u j)k

=
1
γ!

cγ+ui+u j

� ∑
k ̸=i, j:γk≥1

bbγ+ui+u j−uk
γk +bbγ+u j

(γi + 1) +bbγ+u j
(γi + 1)

�

=
1
γ!

cγ+ui+u j

� ∑
k:γk≥1

bbγ−uk+ui+u j
γk +bbγ+ui

+bbγ+u j

�

= cγ+ui+u j

� ∑
k:γk≥1

bbγ−uk+ui+u j

(γ− uk)!
+

1
γ!
(bbγ+ui

+bbγ+u j
)
�

= cγ+ui+u j

� ∑
k:γk≥1

(Qγ−uk
)i j +

1
γ!
(bbγ+ui

+bbγ+u j
)
�
,

which shows the claim.

5.4.2 The Polynomial fd in the Case d = 3, L = 2

Here we show that the polynomial fd is convex in the case d = 3 and L = 2. In
view of Lemma 5.18 it suffices to show that the matrix Qγ is positive semidefinite
for any γ ∈ Nm

1 . Up to symmetry it suffices to show that Qγ ⪰ 0 for γ = u1. In
view of Lemma 5.21 we have

Qu1
= (cu1+ui+u j

)mi, j=1︸ ︷︷ ︸
=Mu1

◦(Q0 + (bbu1+ui
+bbu1+u j

)mi, j=1︸ ︷︷ ︸
=Ru1

).

We have shown earlier that the matrix Mu1
is positive semidefinite, which follows

from the fact that the matrix M2 is positive semidefinite (in view of relation (5.13),
Lemma 5.13 and Corollary 5.16). Hence, if we can show that Q0 + Ru1

⪰ 0 then



118 Symmetry Reduction in Convex Opt. with Applications in Combinatorics

this will imply that Qu1
⪰ 0 and conclude the proof of Theorem 5.3. In the rest of

this section we show that Q0 + Ru1
⪰ 0.

We begin with describing the entries of the matrix Q0+Ru1
. By definition, the

entries of Q0 (case γ= 0) are

(Q0)ii = 2b2ui
=

2
L

, (Q0)i j = bui+u j
=

2
|ei ∪ e j|

for i ̸= j ∈ [m].

Moreover, bb2u1
= 2b2u1

= 2
L and bbu1+ui

= bu1+ui
= 2
|e1∪ei | for i ≥ 2. Using this we

obtain that

Q0 + Ru1
= 2 ·

� 1
|e1 ∪ e j|

+
1

|ei ∪ e j|
+

1
|e1 ∪ ei|

�m

i, j=1
=: 2B,

where we define the matrix B as

B :=
� 1
|e ∪ f | +

1
|e1 ∪ e| +

1
|e1 ∪ f |

�
e, f ∈E

. (5.28)

The main result of this section is the next lemma, which shows that the matrix B
(and thus Q0 + Ru1

) is positive semidefinite. As observed above, this implies that
the polynomial f3 is convex for L = 2 and thus settles Conjecture 5.17 for the case
d = 3, L = 2.

Proposition 5.22. Assume L = 2. The matrix B in (5.28) is positive semidefinite.

Before proceeding to the proof, let us make a few observations. Note that the
matrix B from (5.28) can be decomposed as

B =
� 1
|e ∪ f |

�
e, f ∈E︸ ︷︷ ︸

=M0

+
� 1
|e1 ∪ e| +

1
|e1 ∪ f |

�
e, f ∈E︸ ︷︷ ︸

=:R

.

So, B = M0 + R, where M0 = M; has been shown earlier to be positive semidef-
inite (recall Corollary 5.16, or note that M0 is the matrix M from (5.6) as we
are in the case L = 2). On the other hand, the matrix R is not positive semidef-
inite. In fact, R has rank 2, and it has a negative eigenvalue. One can infer
from the results in Section 5.3.1 that λmin(M0) = 1/12, while one can check that
λmin(R)< −1/12 = −0.0833... when n≥ 6 (see Table 5.1 below). Hence, in gen-
eral one cannot argue that B ⪰ 0 by simply looking at the smallest eigenvalues
of its summands M0 and R. On a very high level, we will show positive semidef-
initeness of the matrix B by observing that it has a simple block structure, which
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we can exploit by taking several successive Schur complements; in this way we
obtain well-structured matrices that can be directly shown to be positive semidef-
inite. The exact details are not difficult, but a bit technically involved.

In the rest of the section we prove Proposition 5.22. To fix ideas we let e1 be
the edge e1 = {1,2} and to simplify notation we set p = n−2 and q =

�n−2
2

�
. Then

the index set of B can be partitioned into {e1} ∪ I1 ∪ I2 ∪ I0, setting Ik = {{k, i} :
3 ≤ i ≤ n} for k = 1,2, and I0 = {{i, j} : 3 ≤ i < j ≤ n}. So |I1| = |I2| = p and
|I0| = q. With respect to this partition one can verify that the matrix B has the
following block-form:

B =

e1 I1 I2 I0





e1
3
2

7
6 J1,p

7
6 J1,p J1,q

I1
7
6 Jp,1 Jp +

1
6 Ip

11
12 Jp +

1
12 Ip

5
6 Jp,q +

1
12Γ

T

I2
7
6 Jp,1

11
12 Jp +

1
12 Ip Jp +

1
6 Ip

5
6 Jp,q +

1
12Γ

T

I0 Jq,1
5
6 Jq,p +

1
12Γ

5
6 Jq,p +

1
12Γ M + 1

2 Jq

.

Here M is the matrix from (5.6) (replacing n by p = n− 2). We have shown in
Section 5.3.1 (see relation (5.7) and Lemma 5.9) that M can be decomposed as

M =
1
12

Iq +
1
4

Jq +
1
12
Γ Γ T ,

where Γ = Γp is the
�p

2

�× p matrix whose ( f , i)th entry is |{i} ∩ f |.
We now proceed to show that the matrix B is positive semidefinite. Note

that its lower right diagonal block indexed by the set I0 is positive semidefinite
(since M ⪰ 0). Our strategy is now to ‘eliminate’ the three borders indexed by
the sets {e1}, I1 and I2 successively, one by one, by taking Schur complements,
until reaching a final matrix (indexed by I0) whose positive semidefiniteness can
be seen directly. To do the Schur complement operations we will need to invert
matrices of the form aI + bJ . The next lemma indicates how to do that, its proof
is straightforward and thus omitted.

Lemma 5.23. For a, b ∈ R such that a+pb ̸= 0, the matrix aIp+bJp is non-singular
with inverse

(aIp + bJp)
−1 =

1
a

�
Ip −

b
pb+ a

�
Jp.
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Now come three steps where we successively eliminate the three borders of B
indexed by {e1}, I1 and I2, by taking successive Schur complements with respect
to the upper left corner.

Step 1: We take a first Schur complement with respect to the upper left corner of
B (indexed by e1). We call eB1 the resulting matrix, which reads







Jp +
1
6 Ip

11
12 Jp +

1
12 Ip

5
6 Jp,q +

1
12Γ

T

11
12 Jp +

1
12 Ip Jp +

1
6 Ip

5
6 Jp,q +

1
12Γ

T

5
6 Jq,p +

1
12Γ

5
6 Jq,p +

1
12Γ

1
12 Iq +

1
12Γ Γ

T + 3
4 Jq

−2
3




7
6 Jp,1

7
6 Jp,1

Jq,1



�

7
6 J1,p

7
6 J1,p J1,q

�

=







5
54 Jp +

1
6 Ip

1
108 Jp +

1
12 Ip

1
18 Jp,q +

1
12Γ

T

1
108 Jp +

1
12 Ip

5
54 Jp +

1
6 Ip

1
18 Jp,q +

1
12Γ

T

1
18 Jq,p +

1
12Γ

1
18 Jq,p +

1
12Γ

1
12 Iq +

1
12Γ Γ

T + 1
12 Jq

.

Setting B1 = 6eB1, we obtain B ⪰ 0⇐⇒ eB1 ⪰ 0⇐⇒ B1 ⪰ 0, where

B1 =







5
9 Jp + Ip

1
18 Jp +

1
2 Ip

1
3 Jp,q +

1
2Γ

T

1
18 Jp +

1
2 Ip

5
9 Jp + Ip

1
3 Jp,q +

1
2Γ

T

1
3 Jq,p +

1
2Γ

1
3 Jq,p +

1
2Γ

1
2 Iq +

1
2Γ Γ

T + 1
2 Jq

.

Step 2: We now take the Schur complement with respect to the upper left corner
of B1 (indexed by I1), where we use Lemma 5.23 to invert it:

(Ip + 5/9Jp)
−1 = Ip − 5/(5p+ 9)Jp.

After taking this Schur complement the resulting matrix eB2 reads:

eB2 =

 !
5
9 Jp + Iq

1
3 Jp,q +

1
2Γ

T

1
3 Jq,p +

1
2Γ

1
2 Iq +

1
2Γ Γ

T + 1
2 Jq
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−



1
18 Jp +

1
2 Ip

1
3 Jq,p +

1
2Γ


�Ip −

5
(5p+ 9)

Jp

��
1
18 Jp +

1
2 Ip

1
3 Jp,q +

1
2Γ

T
�

=

 !
3
4 Ip +

11p+23
4(5p+9) Jp

1
4Γ

T + 3p+7
2(5p+9) Jp,q

1
4Γ +

3p+7
2(5p+9) Jq,p

1
2 Iq +

1
4Γ Γ

T + 3p+7
2(5p+9) Jq

.

Setting B2 = 4eB2 we obtain B ⪰ 0⇐⇒ B1 ⪰ 0⇐⇒ B2 ⪰ 0, where

B2 =

 !
3Ip +

11p+23
5p+9 Jp Γ T + 2(3p+7)

5p+9 Jp,q

Γ + 2(3p+7)
5p+9 Jq,p 2Iq + Γ Γ T + 2(3p+7)

5p+9 Jq
.

Step 3: Inverting the top left block of B2 via Lemma 5.23 gives

�
3Ip +

11p+ 23
5p+ 9

Jp

�−1
=

1
3

Ip −
(11p+ 23)

3(11p2 + 38p+ 27)
Jp.

Taking the third and final Schur complement with respect to this block in B2 we

get the matrix

B3 := 2Iq + Γ Γ
T +

2(3p+ 7)
5p+ 9

Jq

−
�
Γ T +

2(3p+ 7)
5p+ 9

Jq,p

��1
3

Ip −
(11p+ 23)

3(11p2 + 38p+ 27)
Jp

��
Γ T +

2(3p+ 7)
5p+ 9

Jp,q

�

= 2Iq +
2
3
Γ Γ T +

2(9p+ 25)
3(11p+ 27)

Jq.

It is now clear that B3 ⪰ 0. In turn, this implies that B2 ⪰ 0 and thus B ⪰ 0, which
concludes the proof of Proposition 5.22.

We conclude with an indication why the above proof seems difficult to extend
to the general case L ≥ 3. The biggest hurdle lies in the richness of the possible
intersections between edges of large size. More concretely, recall that the (e, f )th
entry of the matrix B in (5.28) depends on |e∪ f |, |e∪e1| and | f ∪e1|. So one has to
take into account how the two edges e, f pairwise interact within e1 and outside
it, which becomes technically involved when |e1|= L is large. So the matrix B has
an increasingly involved block structure when L grows. In addition, some blocks
in B may have a form that requires an additional symmetry reduction to become
amenable.
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5.4.3 Some Numerical Justification for Convexity of fd

We have carried out some numerical experiments for a range of values of d, L, n
and verified that the matrices Qγ are positive semidefinite for all γ ∈ Nn

d−2 in these
cases. Hence, for these values the polynomial fd is convex and Conjecture 5.17
holds. Recall from Lemma 5.21 that the matrix Qγ can be decomposed as

Qγ = Mγ ◦
� ∑

k∈[m]:γk≥1

Qγ−uk

︸ ︷︷ ︸
=:Bγ

+Rγ
�
= Mγ ◦ (Bγ + Rγ).

By the results in Section 5.3 we already know that the matrix Mγ is positive
semidefinite. Hence, it now suffices to show that the matrix Bγ + Rγ is positive
semidefinite for each γ ∈ Nn

d−2. We did this in the previous section for the case
d = 3 (and L = 2). We have computed the minimum eigenvalues of the matrices
Qγ, Bγ and Rγ for different values of n, d and L and give this information for the
case L = 2 in Table 5.1 below (for d = 3) and in Tables 5.2-5.4 in Appendix A (for
d ≥ 4). (Further numerical results for L ≥ 3 can be found in the arXiv version of
this chapter). In each case we consider the possible different cases for selecting
γ ∈ Nn

d−2 up to symmetry; the different instances of γ are indicated in the column
labeled γ. For instance, for d = 3, L = 2 there is only one possibility, say γ = u1

corresponding to edge e1 = {1, 2} (see Table 5.1). For d = 4, L = 2 there are three
possibilities: γ= 2e1 with e1 = {1,2}, γ= u1+u2 with e1 = {1, 2} and e2 = {1,3},
and γ= u1 + u2 with e1 = {1, 2} and e2 = {3, 4} (see Table 5.2).

In all cases we find that Qγ is positive semidefinite (in fact, positive definite).
As already mentioned in Section 5.4.2 for the case d = 3, we see that in general
this cannot be deduced by considering its summands separately, since Rγ has a
negative smallest eigenvalue and λmin(Bγ)+λmin(Rγ)< 0 from a certain n (which
depends on d and L). In addition, we observe that λmin(Bγ) stays constant from
a certain n while λmin(Rγ) keeps decreasing. It remains an open problem to show
that the property Qγ ⪰ 0 holds in general.

For recent progress on this problem we refer to Polak [Pol22], who proved that
all the matrices Qγ are positive semidefinite in the case d ≤ 8 and L = 2. One of
the difficulties is that one needs to enumerate the distinct patterns for γ ∈ Nm

d−2,
i.e., the number of multigraphs with d−2 edges. As mentioned earlier in Example
5.4 this number is given by the OEIS sequence A050535 [OEI99a], and it grows
quickly with d.
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5.5 Numerical Results for the Polynomials fd

We group here Table 5.2 through Table 5.4, which show the eigenvalues of the
matrices Qγ, Bγ and Rγ for L = 2 and small values of n, d. To see that these are
indeed exhaustive, we again refer to the OEIS sequence A050535 [OEI99a] giving
the number of multigraphs with up to four edges. Note that some multigraphs can
only appear if the number n of vertices is large enough.

d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

3 2 3 [[1, 2]] 0.0556 0.1667 -0.0236
3 2 4 [[1, 2]] 0.0347 0.0833 -0.0478
3 2 5 [[1, 2]] 0.0347 0.0833 -0.0729
3 2 6 [[1, 2]] 0.0347 0.0833 -0.0987
3 2 7 [[1, 2]] 0.0347 0.0833 -0.1249
3 2 8 [[1, 2]] 0.0347 0.0833 -0.1514

Table 5.1: Case d = 3, L = 2

d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

4 2 3 [[1, 2], [1, 2]] 0.0185 0.0556 -0.0415
4 2 4 [[1, 2], [1, 2]] 0.0133 0.0347 -0.0805
4 2 5 [[1, 2], [1, 2]] 0.0133 0.0347 -0.1189
4 2 6 [[1, 2], [1, 2]] 0.0133 0.0347 -0.1572

4 2 3 [[1, 3], [1, 2]] 0.0593 0.1778 -0.0028
4 2 4 [[1, 3], [1, 2]] 0.0238 0.0802 -0.0478
4 2 5 [[1, 3], [1, 2]] 0.0214 0.0743 -0.092
4 2 6 [[1, 3], [1, 2]] 0.0214 0.0741 -0.1359
4 2 7 [[1, 3], [1, 2]] 0.0214 0.074 -0.1798

4 2 4 [[3, 4], [1, 2]] 0.0174 0.0694 -0.0012
4 2 5 [[3, 4], [1, 2]] 0.0174 0.0694 -0.029
4 2 6 [[3, 4], [1, 2]] 0.0174 0.0694 -0.0565



124 Symmetry Reduction in Convex Opt. with Applications in Combinatorics

d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

4 2 7 [[3, 4], [1, 2]] 0.0174 0.0694 -0.084
4 2 8 [[3, 4], [1, 2]] 0.0174 0.0694 -0.1115
4 2 9 [[3, 4], [1, 2]] 0.0174 0.0694 -0.139

Table 5.2: Case d = 4, L = 2

d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

5 2 3 [[1, 2], [1, 2], [1, 2]] 0.0062 0.0185 -0.0425
5 2 4 [[1, 2], [1, 2], [1, 2]] 0.0049 0.0133 -0.0804
5 2 5 [[1, 2], [1, 2], [1, 2]] 0.0049 0.0133 -0.1163

5 2 3 [[1, 3], [1, 2], [1, 2]] 0.0298 0.0894 -0.0062
5 2 4 [[1, 3], [1, 2], [1, 2]] 0.0111 0.0396 -0.0605
5 2 5 [[1, 3], [1, 2], [1, 2]] 0.0098 0.0358 -0.112
5 2 6 [[1, 3], [1, 2], [1, 2]] 0.0098 0.0358 -0.162

5 2 4 [[3, 4], [1, 2], [1, 2]] 0.0077 0.0307 -0.0085
5 2 5 [[3, 4], [1, 2], [1, 2]] 0.0072 0.0307 -0.038
5 2 6 [[3, 4], [1, 2], [1, 2]] 0.0067 0.0307 -0.0667
5 2 7 [[3, 4], [1, 2], [1, 2]] 0.0067 0.0307 -0.0948

5 2 4 [[1, 4], [1, 3], [1, 2]] 0.0263 0.1052 -0.009
5 2 5 [[1, 4], [1, 3], [1, 2]] 0.0162 0.0716 -0.0681
5 2 6 [[1, 4], [1, 3], [1, 2]] 0.0151 0.0676 -0.1255
5 2 7 [[1, 4], [1, 3], [1, 2]] 0.015 0.0675 -0.1819
5 2 8 [[1, 4], [1, 3], [1, 2]] 0.015 0.0675 -0.2374

5 2 4 [[2, 4], [1, 3], [1, 2]] 0.0188 0.0753 -0.0063
5 2 5 [[2, 4], [1, 3], [1, 2]] 0.0151 0.0678 -0.0613
5 2 6 [[2, 4], [1, 3], [1, 2]] 0.0139 0.0635 -0.1147
5 2 7 [[2, 4], [1, 3], [1, 2]] 0.0139 0.0635 -0.167
5 2 8 [[2, 4], [1, 3], [1, 2]] 0.0139 0.0635 -0.2186

5 2 5 [[2, 3], [1, 5], [1, 4]] 0.0114 0.0571 -0.0053
5 2 6 [[2, 3], [1, 5], [1, 4]] 0.0113 0.0569 -0.0395
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d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

5 2 7 [[2, 3], [1, 5], [1, 4]] 0.0107 0.0569 -0.0731
5 2 8 [[2, 3], [1, 5], [1, 4]] 0.0107 0.0569 -0.1062
5 2 9 [[2, 3], [1, 5], [1, 4]] 0.0107 0.0569 -0.1391

5 2 3 [[2, 3], [1, 3], [1, 2]] 0.0926 0.2778 -0.0
5 2 4 [[2, 3], [1, 3], [1, 2]] 0.0237 0.085 -0.0967
5 2 5 [[2, 3], [1, 3], [1, 2]] 0.0212 0.0764 -0.1882
5 2 6 [[2, 3], [1, 3], [1, 2]] 0.0212 0.0764 -0.2766

5 2 6 [[5, 6], [3, 4], [1, 2]] 0.0087 0.0521 -0.0011
5 2 7 [[5, 6], [3, 4], [1, 2]] 0.0087 0.0521 -0.0233
5 2 8 [[5, 6], [3, 4], [1, 2]] 0.0087 0.0521 -0.0452
5 2 9 [[5, 6], [3, 4], [1, 2]] 0.0087 0.0521 -0.067
5 2 10 [[5, 6], [3, 4], [1, 2]] 0.0087 0.0521 -0.0885
5 2 11 [[5, 6], [3, 4], [1, 2]] 0.0087 0.0521 -0.11

Table 5.3: Case d = 5, L = 2

d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

6 2 3 [[1, 2], [1, 2], [1, 2], [1, 2]] 0.0021 0.0062 -0.0349
6 2 4 [[1, 2], [1, 2], [1, 2], [1, 2]] 0.0017 0.0049 -0.0652
6 2 5 [[1, 2], [1, 2], [1, 2], [1, 2]] 0.0017 0.0049 -0.0931

6 2 3 [[1, 3], [1, 2], [1, 2], [1, 2]] 0.0124 0.0371 -0.0094
6 2 4 [[1, 3], [1, 2], [1, 2], [1, 2]] 0.0044 0.0165 -0.0579
6 2 5 [[1, 3], [1, 2], [1, 2], [1, 2]] 0.004 0.0148 -0.1029
6 2 6 [[1, 3], [1, 2], [1, 2], [1, 2]] 0.004 0.0148 -0.1457

6 2 3 [[1, 3], [1, 3], [1, 2], [1, 2]] 0.0261 0.0785 -0.0016
6 2 4 [[1, 3], [1, 3], [1, 2], [1, 2]] 0.0064 0.0237 -0.0626
6 2 5 [[1, 3], [1, 3], [1, 2], [1, 2]] 0.0057 0.0211 -0.1193
6 2 6 [[1, 3], [1, 3], [1, 2], [1, 2]] 0.0057 0.0211 -0.1732

6 2 4 [[3, 4], [1, 2], [1, 2], [1, 2]] 0.0031 0.0125 -0.0141
6 2 5 [[3, 4], [1, 2], [1, 2], [1, 2]] 0.0026 0.0124 -0.0384
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d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

6 2 6 [[3, 4], [1, 2], [1, 2], [1, 2]] 0.0024 0.0115 -0.0616

6 2 4 [[3, 4], [3, 4], [1, 2], [1, 2]] 0.0038 0.0153 -0.0007
6 2 5 [[3, 4], [3, 4], [1, 2], [1, 2]] 0.0036 0.0153 -0.0255
6 2 6 [[3, 4], [3, 4], [1, 2], [1, 2]] 0.0033 0.0153 -0.0492
6 2 7 [[3, 4], [3, 4], [1, 2], [1, 2]] 0.0033 0.0153 -0.0721

6 2 4 [[1, 4], [1, 3], [1, 2], [1, 2]] 0.0147 0.0589 -0.0142
6 2 5 [[1, 4], [1, 3], [1, 2], [1, 2]] 0.0084 0.0386 -0.0771
6 2 6 [[1, 4], [1, 3], [1, 2], [1, 2]] 0.0078 0.036 -0.1372
6 2 7 [[1, 4], [1, 3], [1, 2], [1, 2]] 0.0078 0.036 -0.1952

6 2 4 [[2, 4], [1, 3], [1, 2], [1, 2]] 0.0129 0.0514 -0.0151
6 2 5 [[2, 4], [1, 3], [1, 2], [1, 2]] 0.0079 0.037 -0.0766
6 2 6 [[2, 4], [1, 3], [1, 2], [1, 2]] 0.0073 0.0344 -0.1352
6 2 7 [[2, 4], [1, 3], [1, 2], [1, 2]] 0.0073 0.0344 -0.1919

6 2 4 [[2, 4], [1, 3], [1, 3], [1, 2]] 0.0102 0.0407 -0.0089
6 2 5 [[2, 4], [1, 3], [1, 3], [1, 2]] 0.0074 0.0343 -0.064
6 2 6 [[2, 4], [1, 3], [1, 3], [1, 2]] 0.0068 0.0318 -0.1167
6 2 7 [[2, 4], [1, 3], [1, 3], [1, 2]] 0.0068 0.0318 -0.1675

6 2 5 [[2, 3], [1, 5], [1, 4], [1, 4]] 0.0059 0.0294 -0.0148
6 2 6 [[2, 3], [1, 5], [1, 4], [1, 4]] 0.0052 0.0293 -0.0485
6 2 7 [[2, 3], [1, 5], [1, 4], [1, 4]] 0.0049 0.0278 -0.0813
6 2 8 [[2, 3], [1, 5], [1, 4], [1, 4]] 0.0049 0.0278 -0.1132

6 2 5 [[2, 3], [2, 3], [1, 5], [1, 4]] 0.0053 0.0266 -0.0055
6 2 6 [[2, 3], [2, 3], [1, 5], [1, 4]] 0.0047 0.0259 -0.0344
6 2 7 [[2, 3], [2, 3], [1, 5], [1, 4]] 0.0044 0.0249 -0.0623
6 2 8 [[2, 3], [2, 3], [1, 5], [1, 4]] 0.0044 0.0249 -0.0897

6 2 3 [[2, 3], [1, 3], [1, 2], [1, 2]] 0.0525 0.1574 -0.0017
6 2 4 [[2, 3], [1, 3], [1, 2], [1, 2]] 0.0125 0.0467 -0.1176
6 2 5 [[2, 3], [1, 3], [1, 2], [1, 2]] 0.0112 0.0416 -0.2252
6 2 6 [[2, 3], [1, 3], [1, 2], [1, 2]] 0.0112 0.0416 -0.3274

6 2 6 [[5, 6], [3, 4], [1, 2], [1, 2]] 0.0038 0.023 -0.0086
6 2 7 [[5, 6], [3, 4], [1, 2], [1, 2]] 0.0035 0.0229 -0.0278
6 2 8 [[5, 6], [3, 4], [1, 2], [1, 2]] 0.0033 0.022 -0.0466
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d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

6 2 9 [[5, 6], [3, 4], [1, 2], [1, 2]] 0.0033 0.022 -0.065

6 2 5 [[1, 5], [1, 4], [1, 3], [1, 2]] 0.0208 0.104 -0.0167
6 2 6 [[1, 5], [1, 4], [1, 3], [1, 2]] 0.0121 0.066 -0.0852
6 2 7 [[1, 5], [1, 4], [1, 3], [1, 2]] 0.0115 0.063 -0.1515
6 2 8 [[1, 5], [1, 4], [1, 3], [1, 2]] 0.0115 0.0629 -0.2164

6 2 5 [[2, 3], [1, 5], [1, 4], [1, 2]] 0.0141 0.0706 -0.0132
6 2 6 [[2, 3], [1, 5], [1, 4], [1, 2]] 0.0107 0.0592 -0.0743
6 2 7 [[2, 3], [1, 5], [1, 4], [1, 2]] 0.0101 0.0562 -0.1336
6 2 8 [[2, 3], [1, 5], [1, 4], [1, 2]] 0.0101 0.0562 -0.1915

6 2 6 [[2, 3], [1, 6], [1, 5], [1, 4]] 0.0084 0.0505 -0.0119
6 2 7 [[2, 3], [1, 6], [1, 5], [1, 4]] 0.0079 0.0503 -0.0503
6 2 8 [[2, 3], [1, 6], [1, 5], [1, 4]] 0.0075 0.049 -0.0879
6 2 9 [[2, 3], [1, 6], [1, 5], [1, 4]] 0.0075 0.0489 -0.1248

6 2 4 [[2, 3], [1, 4], [1, 3], [1, 2]] 0.0246 0.0985 -0.0122
6 2 5 [[2, 3], [1, 4], [1, 3], [1, 2]] 0.0162 0.0746 -0.1185
6 2 6 [[2, 3], [1, 4], [1, 3], [1, 2]] 0.0151 0.0695 -0.2198
6 2 7 [[2, 3], [1, 4], [1, 3], [1, 2]] 0.0151 0.0695 -0.3177

6 2 4 [[3, 4], [2, 4], [1, 3], [1, 2]] 0.0204 0.0815 -0.0003
6 2 5 [[3, 4], [2, 4], [1, 3], [1, 2]] 0.014 0.0644 -0.0946
6 2 6 [[3, 4], [2, 4], [1, 3], [1, 2]] 0.0129 0.0594 -0.1846
6 2 7 [[3, 4], [2, 4], [1, 3], [1, 2]] 0.0129 0.0594 -0.2716

6 2 6 [[2, 6], [2, 3], [1, 5], [1, 4]] 0.0077 0.046 -0.005
6 2 7 [[2, 6], [2, 3], [1, 5], [1, 4]] 0.0074 0.0456 -0.0392
6 2 8 [[2, 6], [2, 3], [1, 5], [1, 4]] 0.0071 0.0456 -0.0727
6 2 9 [[2, 6], [2, 3], [1, 5], [1, 4]] 0.0071 0.0456 -0.1055

6 2 5 [[2, 5], [2, 3], [1, 4], [1, 3]] 0.0121 0.0603 -0.0084
6 2 6 [[2, 5], [2, 3], [1, 4], [1, 3]] 0.01 0.055 -0.0643
6 2 7 [[2, 5], [2, 3], [1, 4], [1, 3]] 0.0094 0.0523 -0.1184
6 2 8 [[2, 5], [2, 3], [1, 4], [1, 3]] 0.0094 0.0523 -0.1712

6 2 6 [[5, 6], [2, 4], [1, 3], [1, 2]] 0.0077 0.0461 -0.0096
6 2 7 [[5, 6], [2, 4], [1, 3], [1, 2]] 0.0073 0.0461 -0.0451
6 2 8 [[5, 6], [2, 4], [1, 3], [1, 2]] 0.007 0.0457 -0.0799
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d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

6 2 9 [[5, 6], [2, 4], [1, 3], [1, 2]] 0.007 0.0457 -0.114

6 2 7 [[4, 5], [2, 3], [1, 7], [1, 6]] 0.0057 0.0399 -0.0047
6 2 8 [[4, 5], [2, 3], [1, 7], [1, 6]] 0.0056 0.0399 -0.0276
6 2 9 [[4, 5], [2, 3], [1, 7], [1, 6]] 0.0053 0.0398 -0.0501
6 2 10 [[4, 5], [2, 3], [1, 7], [1, 6]] 0.0053 0.0398 -0.0723

6 2 5 [[4, 5], [2, 3], [1, 3], [1, 2]] 0.0121 0.0606 -0.0192
6 2 6 [[4, 5], [2, 3], [1, 3], [1, 2]] 0.0112 0.0606 -0.0784
6 2 7 [[4, 5], [2, 3], [1, 3], [1, 2]] 0.0106 0.0594 -0.1359
6 2 8 [[4, 5], [2, 3], [1, 3], [1, 2]] 0.0106 0.0594 -0.1919

6 2 8 [[7, 8], [5, 6], [3, 4], [1, 2]] 0.0043 0.0347 -0.0008
6 2 9 [[7, 8], [5, 6], [3, 4], [1, 2]] 0.0043 0.0347 -0.0161
6 2 10 [[7, 8], [5, 6], [3, 4], [1, 2]] 0.0043 0.0347 -0.0312
6 2 11 [[7, 8], [5, 6], [3, 4], [1, 2]] 0.0043 0.0347 -0.0462

Table 5.4: Case d = 6, L = 2



6
Four Different Views at Flag Algebras

Flag algebras, first introduced by Alexander Razborov in 2007 [Raz07], unify and
generalize previous ideas of numerous authors, and remain one of the most pow-
erful tools in extremal combinatorics to date. While initially focused on extremal
(hyper-)graph theory (see, for example, Razborov’s own survey [Raz13] for some
early results), it has since found applications for various other extremal settings.
For example, the theory has been applied to limits of permutations (also known
as Permutons) [SS18], of (point) order types [Goa+18], and of oriented graphs
[Gil+19].

Recently, a fascinating connection to polynomial optimization in the case
of (hyper-)graphs was found by Raymond, Saunderson, Singh and Thomas
[Ray+18]. The authors showed that one can recover the optimization hierar-
chies used to compute flag sums-of-squares certificates by considering a sequence
of symmetric polynomial optimization problems, and exploiting its symmetries
partially. Chapters 8 and 9 investigate these connections further: We generalize
the approach to arbitrary flag algebras, we fully exploit the symmetry of two
different optimization hierarchies, and we generalize the way these hierarchies
can converge in the limit. In the process we generalize notions coming from
the representation theory of the symmetric group in Chapter 8, which includes a
generalized notion of Young-tableau for different types of flags, as well as com-
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binatorial algorithms to work with these computationally. Finally, we provide an
extensive Julia software package implementing these findings, and provide some
examples.

This chapter focuses on flag algebras themselves: We explain the basics of flag
algebras in the non-induced setting, to our knowledge making it work for the first
time in the literature for arbitrary flag algebras. We compare the non-induced
and the more commonly used induced setting (which we will call Razborov set-
ting), provide a general translation of induced and non-induced flags to (limits
of) polynomials, and provide a novel "Character" basis for flag algebras.

6.1 What is a (Non-Induced) Flag Algebra?

We will here introduce some relevant details concerning flag algebras. In con-
trast to Razborov [Raz07], we will prioritize the setting of non-induced sub-flag
densities (to be defined in a moment). This simplifies many proofs, formulas
and theorems of Razborov considerably, and was, for example, already used in
the setting of graphs by the authors of [Ray+18]. At the same time, it is only a
Möbius transformation away from Razborov’s setting, so translating between the
two settings is straightforward, as we will see in Section 6.4.

Triangle Free Graphs. We start with probably the most common example, and
one of first milestones in extremal graph theory, known as Mantel’s theorem
[Man07], which answers the question: What is the maximum edge-density in a
triangle free graph, as the number of vertices approaches infinity?

Here we are working with an increasing sequence of graphs G = (Gn)∞n=1, where
each graph Gn has more vertices than the graph Gn−1 before. To formalize the
problem, we first have to define the subgraph density of a given graph H in this
sequence. We choose to define the density of H = (V (H), E(H)), where V (H) =
[k] = {1, . . . , k}, E(H) ⊆ �[k]2

�
in G as

p(G, H) := lim
n→∞P[{σn(i),σn( j)} ∈ E(Gn) ∀{i, j} ∈ E(H)]

= lim
n→∞P[σn(H) is a subgraph of Gn]

= lim
n→∞P[σn(H) ⊆ Gn] ∈ [0,1],

where σn is a permutation of vertices of Gn, chosen uniformly at random. We use
the notation G ⊆ G′ for denoting that G is a (non-induced) subgraph of G′, i.e.
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V (G) ⊆ V (G′) and E(G) ⊆ E(G′). By definition, this is the limit of the probabilities
that, given a random way to embed H in Gn, this results in a (non-induced) sub-
graph of Gn. Non-induced simply means that we may remove edges from Gn to
obtain H this way. While generally the limit p(G, H) does not exist, we can restrict
ourselves to convergent sequences, in the sense of the following proposition.

Proposition 6.1. Let G = (Gn)∞n=1 be an increasing sequence of graphs. Then there
exists an increasing subsequence Ĝ of G such that the limit p(Ĝ, H) exists for every
graph H.

Proof. Consider the sequence (dn)∞n=1, where each dn is the (countably-infinite
dimensional) vector

dn = (P[σn(H) is a subgraph of Gn])H graph ∈ [0,1]ℵ0 .

By Tychonoff’s theorem [Tyc35] products of compact spaces are compact, and the
countably infinite product of the interval (also known as Hilbert Cube [SS78])
is metrizable, implying that [0, 1]ℵ0 is sequentially compact. Thus, there exists a
convergent subsequence of (dn)∞n=1, and the corresponding subsequence of graphs
Ĝ has the property we want to show.

From now on, we are always working with increasing sequences of graphs,
which converge in the sense of Proposition 6.1, whenever we mention graph se-
quences.

This kind of density is also called (see [Ray+18]) the limit of the injective
density of H as a (not necessarily induced) subgraph in G. Injective means here
that the random embedding is injective (one to one), and no two vertices of H
end up on the same vertex of the Gn.

We can now formalize the problem of maximizing the edge-density in triangle
free graphs (in the limit) as

ex( ; ) :=max
G
{p(G, ) : p(G, ) = 0},

where the maximum is taken over all (increasing and convergent) sequences G =
(Gn)∞n=1 of graphs.
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An Easy Lower Bound. One can easily find a good lower bound for this problem:
We split the vertices into two sets with an (almost) equal number of vertices, and
fully connect the two subsets, to construct the complete bipartite graph Gn =
K⌈ n

2 ⌉,⌊ n
2 ⌋. This sequence of graphs is obviously triangle free, and its edge density

approaches

lim
n→∞

⌈ n
2 ⌉⌊ n

2 ⌋�n
2

� =
1
2

,

thus ex( ; ) is at least 1
2 .

6.2 Upper Bounds via Flag Sums-of-Squares

But how can one prove that this bound, and thus this construction, is optimal?
Here Flag algebras come into play. We first note that the product of two densities
is equal to the density of the graph obtained by gluing the two graphs together on
distinct vertices.

Proposition 6.2. Let H1, H2 be graphs, and G be an (increasing, convergent) graph
sequence. Then

p(G, H1)p(G, H2) = p(G, H1 ∪H2),

where H1 ∪H2 denotes the disjoint union of the graphs H1 and H2.

Proof. By definition, we have

p(G, H1)p(G, H2) = lim
n→∞P[σn(H1) ⊆ Gn] · P[σ′n(H2) ⊆ Gn]

= lim
n→∞P[σn(H1) ⊆ Gn ∧σ′n(H2) ⊆ Gn].

As n increases, the probability that the two graphs H1 and H2 are sent to distinct
sets of vertices approaches one:

lim
n→∞P[V (σn(H1))∩ V (σ′n(H2)) = ;] = 1.

By the law of total probability, this implies that

p(G, H1)p(G, H2) = lim
n→∞P[σn(H1 ∪H2) ⊆ Gn] = p(G, H1 ∪H2).
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For example, we have

p(G, )p(G, ) = p(G, ), (6.1)

the product of the edge and triangle density is the density of the graph on five
vertices with a disjoint edge and triangle.

We can extend the definitions of density and product to partially labeled (or
flagged) graphs, which we call flags. The idea is to fix some entries of the ran-
dom permutation σn , calling these fixed vertices the labeled vertices of a flag. For

instance, the density p

�
G,

1
�

, where
1

is a flag with one labeled vertex, is

p

�
G,

1
�
= lim

n→∞P
�
σn

�
1

2

�
is a subgraph of Gn | σn(1) = 1

�

= lim
n→∞

degGn
(1)

n− 1
,

the limit of the (relative) degree of the vertex 1 in the sequence of graphs.
Formally, we define a flag F = (H, f ) to be a graph H together with an injective

function f : W → N, which assigns labels to a subset of vertices W ⊆ V (H). The
density of a flag F in a sequence of graphs is then defined analogously as

p(G, F) := lim
n→∞P[σn(H) ⊆ Gn | σn(w) = f (w)∀w ∈W ] ∈ [0,1],

where we can assume convergence as before in the unlabeled case. If W = ;, we
identify F = (H, f ) = H.

Accordingly, the product of densities of two flags glues the vertices with the
same label on top of each other, and unlabeled vertices to distinct vertices.

Proposition 6.3. Let F1 = (H1, f1 : W1→ N), F2 = (H2, f2 : W1→ N) be flags, and
G be an (increasing, convergent) graph sequence. Then

p(G, F1)p(G, F2) = p(G, F1 · F2),

where F1·F2 denotes the gluing operator. The flag F1·F2 is obtained by first taking the
disjoint union H1∪H2 of the graphs, adopting both of their labels, and then merging
vertices v1 ∈ V (H1), v2 ∈ V (H2) if they have the same labels f1(v1) = f2(v2).

Proof. Analogous to the proof of Proposition 6.2.
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The gluing rules in Propositions 6.2 and 6.3 are independent of the sequences
G. This allows us to drop the sequence G and p in the notation, using the flags
themselves to denote the functions which assigns graph sequences the densities
of the corresponding flags. I.e. the flag F from now on denotes the function

F(G) := p(G, F).

Indeed, the product rules such as equation (6.1) are independent of the graph
sequence G, so we can write (6.1) as

· = .

An example of Proposition 6.3, gluing (multiplying) two flags, is

12 · 12

3
=

12
3 .

Note that double edges are merged, as we are working with simple graphs.
A useful observation here is that the density of the graph consisting of a single

isolated vertex is identical to one in any graph, so adding isolated vertices to a
graph does not change its density in the limit:

G · •= G.

This allows us to eliminate appearing graphs with isolated vertices by replacing
them with the corresponding graphs without these vertices.

We can now consider real linear combinations of flags, sometimes also called
quantum graphs [Lov12]. The set of all quantum graphs forms a real vector space
of functions assigning graph sequences a real number, with a basis given by all
flags without isolated vertices. Together with the gluing operation this vector
space forms an algebra, called the flag algebra of graphs Agraph. We say that a
quantum graph F ∈ Agraph is nonnegative, denoted F ≥ 0, if F(G) ≥ 0 for all
(increasing, convergent) graph sequences G.

Since quantum graphs are functions assigning graph sequences real numbers,
squaring a quantum graph always results in a nonnegative quantum graph. For
example, we have

�
1∅− 2

1
�2

=∅− 4
1
+ 4

1
≥ 0,
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where ∅ denotes the density of the empty graph, which is always 1, as a conse-
quence of the definition of subgraph densities.

The last operation we still need is the unlabeling operator. This operator, de-
noted by ⟦·⟧, averages a quantum graph over all possible choices of labels, effec-
tively removing all labels from vertices. Given a flag F = (H, f ), we define the
unlabeling operator as

⟦F⟧ := E[(H,π ◦ f )] = H,

where π is a random permutation in S∞. We extend the operator linearly to
quantum graphs.

Since averaging over nonnegative numbers results in a nonnegative number,
the unlabeling operator preserves nonnegativity. Thus, we have

��
1∅− 2

1
�2�

=

�
∅− 4

1
+ 4

1
�
=∅− 4 + 4 ≥ 0, (6.2)

and, analogously,

��
1

2
−

1

2 3
−

1

2 3
+

1

2 3

�2�
= − 2 + ≥ 0. (6.3)

Combining the squares (6.2) and (6.3) into one sum-of-squares term we prove

1
2
− + =

�
1
2

�
1∅− 2

1
�2�

+

��
1

2
−

1

2 3
−

1

2 3
+

1

2 3

�2�
≥ 0.

Thus, we obtain 1
2 − ≥ 0 (as we are in the case of triangle free graphs). This

shows that the edge density is at most 1
2 in triangle free graphs in the limit, and

that the lower bound construction coming from complete bipartite graphs is sharp
(in the limit).

As in the polynomial optimization case (6.9), we can restrict the appearing
flags to obtain semidefinite programming hierarchies to solve flag SOS computa-
tionally. There are two naive approaches to truncate the problems for flag alge-
bras: We can either restrict the number of edges in the appearing products H · H ′
between flags, which we call the Lasserre hierarchy for flag SOS, and investigate
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in Chapter 8. Alternatively, we can also restrict the number of vertices in the prod-
ucts H ·H ′, which is more commonly used for flag SOS [FV13], and which we call
Razborov’s hierarchy for flag SOS. This second hierarchy we investigate in Chapter
9.

6.3 General Flag Algebras

Razborov defines flag algebras in a much more general setting, in the language of
finite model theory (see, for example, [HS18] for an introduction). To quote, he
assumes we are working with a "universal first-order theory T with equality in a
language L containing only predicate symbols; we assume T has infinite models."

Basically, this says that our finite models M (for example a graph) are defined
on a base set (vertices) V (M). We have a set of predicates PM

i : V (M)mi → {0, 1},
taking mi arguments each, and thus defining relations between vertices. In the
theory of graphs, for example, we have one predicate Pedge(i, j) indicating which
edges appear in the graph. The set of all true relations in a model M we call E(M),
as it generalizes the edge set of graphs. Having no constant symbols implies that
each vertex essentially has the same role (which is important, as this implies a
certain Sn symmetry), and equality allows us to differentiate between them (as
well as enforcing injectivity of homomorphisms). No function symbols and the
existence of infinite models imply existence of models of every cardinality (of
V (M)), and that each subset of vertices induces a sub-model.

Submodels are defined as the restriction of V (M) to a subset W ⊆ V (M) of
vertices, while keeping all values of predicates (i.e., relations) intact, as long as
all arguments come from within W . Two models M and N are isomorphic, if they
have the same number of vertices, and there exists a bijection σ : V (M)→ V (N)
such that PM

i (x1, . . . , xmi
) = PN

i (σ(x1), . . . ,σ(xmi
)) for each choice of vertices

x j ∈ V (M).
For example, in the case of graphs we have one predicate Pedge taking two

arguments i, j, and Pedge(i, j) = 1 if {i, j} is an edge of our graph. The axioms
here are Pedge(i, j) = Pedge( j, i) (undirected graphs) and Pedge(i, i) = 0 (no loops).

Given a sequence of models M = (Mn)∞n=1, where |V (Mn)| = n, Razborov
defines limits of submodel densities as

pind(M, N) := lim
n→∞P[N ≃ Mn|Vn

]

where, as before in the case of graphs, Vn is a random subset of V (M)with |V (N)|
elements. Note here again that Razborov chooses to count the density of N as
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induced submodel, and the induced submodel Mn|Vn
only has to be isomorphic,

not equal to the model N .
We, instead, choose to work with non-induced submodel densities, defined

analogously to the graph case before as

p(M, N) := lim
n→∞P[P

N
i (x)⇒ PMn

i (σn(x))∀x ∈ V (N)mi , i] ∈ [0, 1],

whereσn is an injective embedding V (N)→ V (Mn), chosen uniformly at random.
As before, gluing together two models glues them together on distinct vertices,

setting relations involving vertices from both models to zero. In the induced set-
ting the product of two models results in a linear combination containing every
possible combination of relations involving both model’s vertices, while we here
simply obtain one new model. We extend the gluing operation to partially la-
beled models, called Flags, in the way as we did before for graphs. Unlabeling
non-induced flags is again simply done by removing the labels from all labeled
vertices.

We may still assume that a number of (potentially infinite) axioms hold in our
theory. As we chose to work in the non-induced setting, and axioms are (usually)
formulated for induced subgraphs, we will need a bit of notation not appearing
in the literature: If a flag fulfills all axioms, we call it valid, otherwise incomplete.
If a flag is incomplete, and does not have a valid completion (as defined in Section
6.4), we call it invalid.

6.3.1 Razborov’s Flag Algebras

Razborov’s flag algebras [Raz07] work slightly different from what we have intro-
duced here. The main difference is that he chooses to work with induced, injective
submodel densities, defined as

pind(G, H) := lim
n→∞P[H ≃ Gn|Vn

],

where Vn is a random subset of |V (H)| = k vertices of Gn, A|B denotes the sub-
model of A with vertices B, and ≃ denotes model-isomorphism. This is the prob-
ability that given a subset of vertices of Gn, the induced submodel is isomorphic
to H.

Both approaches are equivalent in the sense that knowing all subgraph den-
sities in one setting, one can calculate the densities in the other using a Möbius
transformation, as we will see in Section 6.4. Being able to swap between the
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Razborov (i.e. induced) and non-induced settings will be quite useful later to
translate problems formulated in induced densities, as well as simplify one of the
hierarchies considered in Chapter 9, which is why we will introduce the basic
operations later in Section 6.4.

The gluing operation defined by Razborov [Raz07], requires the glued to-
gether flags to have the same set of labels. As he is working with induced densi-
ties, this results in a more complicated gluing action, as we need to consider all
possible ways that edges can be added between vertices of the two graphs, as well
as scalars that depend on the automorphisms of the flags. For example, we obtain
the product �

1
�2

=
1
+

1

in Razborov’s algebra.
The main advantage of this definition is that the product between flags that

differ on the labeled parts is always zero, for example

1

2
·

1

2
= 0.

This splits flag algebras into many subalgebras, one for each fully labeled graph,
which Razborov calls types. In Chapter 9 we investigate a setting closer to his and
exploit the symmetry there.

The unlabeling operator ⟦F⟧ is more complicated in Razborov’s setting as well,
as one has to introduce additional factors due to changing sizes of automorphism
groups. In the non-induced setting this operator is as simple as deleting the labels
from all appearing graphs.

There are two more technical differences in the definitions of Razborov
[Raz07]: He excludes a forbidden family of graphs H from the start, and, in-
stead of optimizing over sequences of graphs, he works with limit functionals.
A function φ, which assigns every H-free finite graph a real number in [0,1] is
called a limit functional, if there is an (increasing, convergent) sequence of H-free
graphs G such that

φ(F) = F(G)

for every H-free graph F . The product rules can then be defined in terms of limit
functionals φ(F1)φ(F2) = φ(F1 · F2). In practice these conventions do not change
much when working with flag algebras, as limit functionals are equivalent to (lim-
its of) graph sequences, and graphs can be excluded later on in a straightforward
manner.
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6.4 Möbius Transformations: Swapping between Induced
and Non-Induced Densities

Möbius transformations have proven their usefulness for transforming various
problems in combinatorics and combinatorial optimization. See, for instance, Ap-
pendix 1 in [Lov12] for the general theory, Definition 3.14 in [Ray+18] for the
case of graph densities, and [Lau03] for an application to the Lasserre hierarchy
of relaxations of problems in binary variables.

The results from [Ray+18] easily generalize to the case of flags of arbitrary
theories. We can define linear transformations between non-induced and induced
densities. Since a missing "edge" in the non-induced setting allows the edge to be
there in the randomly chosen subgraph, we need to consider all induced models
we can obtain by adding edges to the model. For example, the non-induced den-
sity of paths is the sum of the (appropriately scaled) induced densities of the
path and the triangle .

Thus, to swap from non-induced to induced densities, we sum over all possible
combinations to add additional relations to the flag (6.4). Since Razborov defines
the density of a flag as "sub-flag is isomorphic" instead of "sub-flag is identical", we
have to additionally rescale induced densities with the number of ways to draw
the flags, i.e.,

|S|V (M)||
|Aut(M)| =

|V (M)|!
|Aut(M)| . In the rare cases that we are working with both

induced and non-induced flags, we add a subscript Mind resp., Mnon−ind specifying
in which setting the densities lie. We have the following relations:

Mnon−ind =
∑

M̃ : V (M)=V (M̃),
E(M)⊆E(M̃)

|Aut(M̃)|
|V (M̃)|! M̃ind. (6.4)

The inverse of this operation is given by

Mind =
|V (M)|!
|Aut(M)|

∑

M̃ : V (M)=V (M̃),
E(M)⊆E(M̃)

(−1)|E(M̃)|−|E(M)|M̃non−ind. (6.5)

The linear transformation (6.4) is the operation of the Zeta matrix of the lattice
of all (not necessarily valid) flags of size |V (M)|, and its inverse (6.5) is known
as the Möbius transformation of the same lattice. This way we can see the sets of
induced and non-induced flags as different bases of the same flag algebra.

For example, to express the non-induced C4 density in terms of induced den-
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sities, we determine

non−ind =
1
3 ind +

1
6 ind +

1
6 ind + ind =

1
3 ind +

1
3 ind + ind, (6.6)

and, similarly, to express the induced C4 density in non-induced terms

ind = 3
�

non−ind − 2 non−ind + non−ind

�
. (6.7)

The first equation (6.6) should be understood as

p(G, ) =
1
3

pind(G, ) +
1
3

pind(G, ) + pind(G, )

and the second (6.7) as

p(G, )ind = 3p(G, )− 6p(G, ) + 3p(G, ),

where G is a sequence of graphs of increasing size.
Note that in these examples we assume Pedge takes an unordered pair as ar-

gument. If one instead sees Pedge(i, j) and Pedge( j, i) as two different values of
relations, one still obtains the same results after eliminating incomplete flags, as
explained in the next subsection.

Problems when Working with Non-Induced Densities. Some flag algebra’s ax-
ioms cannot be easily formulated in the non-induced setting. Let us consider, for
example, the theory of linear (or total) orderings. Here we have one predicate
"<", taking two arguments. The axioms here are simple:

• Transitive: (x < y)∧ (y < z)⇒ (x < z),

• Linear: (x < y)∨ (y < x),

• Irreflexive: ¬(x < x),

• Antisymmetric: ¬�(x < y)∧ (y < x)
�
,

for all distinct vertices x , y, z.
But in the non-induced setting, a false relation in a flag means that it may or

may not be true, as it corresponds to the density of sub-flags, which have at least
the same true relations. For example, the flag F given by relations {x < y, y < z}
is not transitive, or even antisymmetric, as it leaves x < z or z < x unknown,
and is thus incomplete. And yet, by definition, it describes the density of sub-flags
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on three vertices {x1, x2, x3} of a sequence of linear orderings, such that at least
x1 < x2 and x2 < x3 are true. By transitivity of each element of the sequence of
the linear orderings, this tells us that the density of the flag F is exactly the same as
the density of the transitive, and hence, valid, flag given by {x < y, y < z, x < z}.
The incomplete flag {x < y, y < x} on the other hand is invalid, as it cannot be
completed to a valid flag. Invalid flags have thus always density zero in a sequence
of valid models of increasing size.

In contrast, in the Razborov setting, incomplete and invalid flags are the same.
Incomplete induced flags, i.e., flags not fulfilling all of their axioms, have always
density zero, and can hence, be eliminated in the Zeta transformation (6.5):

Mnon−ind =
∑

M̃ : V (M)=V (M̃),
E(M)⊆E(M̃),

M̃ is valid

|Aut(M̃)|
|V (M̃)|! M̃ind. (6.8)

This tells us that we can always write densities of incomplete flags as sum of
valid flags.

Proposition 6.4. Let F be an incomplete (non-induced) flag. Then F is equivalent
to a linear combination of valid non-induced flags.

Proof. We obtain the valid quantum flag by calculating Moebius(Zeta(F)), elimi-
nating invalid flags after applying Zeta, and repeating recursively with potentially
incomplete flags in the result. If F is incomplete, the induced equivalent to F in
the sum is eliminated after applying Zeta. Since all other appearing flags have
more true relations, and there is only a finite maximum number of them in total,
this has to eventually conclude in a quantum flag only involving valid non-induced
flags.

For example, the incomplete linear ordering {a < b, c < d} is the same as
the sum of the linear orderings determined by a < b < c < d, a < c < b < d,
a < c < d < b, c < a < b < d, c < a < d < b and c < d < a < b. All six
linear orderings are isomorphic (in fact, there is just one linear ordering up to
isomorphism for each number of vertices), so the density of {a < b, c < d} is six
times the density of the linear ordering a < b < c < d.

In general, this allows us to always reformulate our problems (and optimiza-
tion hierarchies) to only involve valid flags, by substituting incomplete flags with
valid equivalent quantum flags.
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Advantages of Working with Non-Induced Flags. As mentioned before, various
factors appearing in Razborov’s work [Raz07] simplify to be exactly one in this
setting, such as the factors appearing after unlabeling a partially labeled flag. We
saw that we can eliminate incomplete flags, reducing the number of considered
flags to be identical to the Razborov setting, assuming that we eliminate isolated
vertices in both settings and include all flags up to a fixed number of vertices.

Multiplication of non-induced flags is much simpler than multiplying induced
flags: In the Razborov setting we need to consider each possible combination
of missing edges between unlabeled vertices coming from different flags. For
example, in the Razborov setting, the squared edge density is a quantum graph
involving six different graphs:

ind · ind =
1
3 ind +

1
3 ind +

2
3 ind +

1
3 ind +

2
3 ind + ind.

This results in an exponential increase in coefficients in the final SDP in the
Razborov setting. Meanwhile, in the non-induced setting, we simply have

· = ,

corresponding to just one coefficient in the final optimization problem.

This allows us to work with larger, but sparser flags. If our problem is formu-
lated with big sparse graphs, the Razborov setting quickly reaches its limits. For
example, if in our problem the edge density to the power five appears, we may
want to include products such as

·

in our computations. In the Razborov setting this results in coefficients corre-
sponding to most of the 12005168 graphs on ten vertices up to isomorphism (see,
for example, sequence A000088 in OEIS [OEI99b]). Meanwhile, when working
with non-induced densities, we may restrict ourselves to graphs with up to five
edges instead, of which there are just 114.

But there are also some advantages to working with induced flags, such as
easy orthogonal relations between partially labeled flags that differ on the labeled
part. We will investigate these further, combining their advantages with those of
non-induced flags, by defining partially induced flags later in Chapter 9.
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6.5 Connection to Polynomial Optimization

We can reformulate problems formulated with flags as sequences of polynomial
optimization problems. In the case of (hyper-)graphs, this approach was investi-
gated before in [Ray+18]. We generalize this approach, and take a deeper look
at the problem’s symmetries in Chapter 8.

Let us first take a look at the setting of graphs as well: We introduce binary
variables x i j for every (unordered) pair i j, which correspond to edges. The prob-
lems we consider are of the form

min f (x)

s.t. gi(x)≥ 0 for i = 1, . . . , m,

x = (x i j)1≤i< j≤n ∈ {0,1}([n]2 ),

where all polynomials f , gi are fully symmetric with respect to the action of the
symmetric group Sn given by

σ(x i j) = xσ(i)σ( j)

for σ in Sn. Note that we need to sort the indices here (or we fix x i j = x ji).
Throughout this and the following chapters it will always be implied that we are
working in the quotient algebra R[x]/〈x i j − x2

i j : i j〉, even when we abuse the
notation and use R[x] instead.

We write R[x]Sn for the set of symmetric polynomials (in binary variables),
i.e., polynomials p with σ(p) = p for all σ ∈ Sn. In Chapter 7 we will show how
to exploit the symmetries of a polynomial optimization problem with symmetries.

Throughout this chapter we will keep coming back to the basic example of
maximizing the edge density in a graph while avoiding triangles. We first use the
notation exn(G, H) here for the maximum density of subgraphs G in H-free graphs
with n vertices.

Example 6.5. For all n> 0 we define

exn( , ) :=max
1�n
2

�
∑

1≤i< j≤n

x i j

s.t.
1�n
3

�
∑

1≤i< j<k≤n

x i j x ik x jk = 0,

x i j ∈ {0, 1} for all i < j.
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This problem is clearly fully symmetric: The objective is the (scaled) sum of all
variables, which here model edges in a graph, and can be interpreted as the density
of edges in the graph. The constraint is exactly the sum of monomials lying in the
orbit of monomials representing triangles in the graph. Since the variables are
nonnegative, this implies that the graph is triangle free.

If we take the limit as n goes towards infinity, this results exactly in the defi-
nition we discussed earlier for flag algebras:

ex( , ) = sup
�

: = 0
	
= lim sup

n→∞
exn( , ).

These problems may look slightly different to the attentive reader. Indeed, the left
side says that the corresponding sequence of graphs G = (Gn)∞n=1 has a triangle
density that converges to zero, while the right side implies that each graph Gn is
triangle free. But it can be shown ([Lov12]) that the problems have the same
optimal value.

It was shown in [Ray+18] that, under the right scaling, after a partial sym-
metry reduction, the problems exn indeed converge to the well known flag SOS
hierarchies introduced by Razborov [Raz07], up to the coefficients in the data
matrices, if we restrict the maximum number of vertices appearing in the flags.
The reason for deeper look at flag algebras from the polynomial optimization
perspective is that the authors there chose to do a partial symmetry reduction,
which implies that there is a stronger reduction, and thus a more efficient way
to compute flag sums-of-squares. We will investigate the stronger, full symmetry
reduction in Chapter 8.

The Lasserre Hierarchy. Before we can exploit the symmetries of the problem,
we have to relax and reformulate the problem to make it convex. The usual way to
make polynomial optimization problems tractable is to restrict solutions to sums-
of-squares (SOS). To do this, we first rewrite the problem as an equivalent problem
over nonnegative polynomials. Indeed, the infimum of f over the semi-algebraic
set

{x ∈ {0, 1}([n]2 ) : gi(x)≥ 0 ∀i = 1, . . . , m},

where the gi are polynomials modelling the constraints of our problems, is the
same as maximizing a scalar λ such that f −λ is nonnegative on the same semi-
algebraic set.
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As introduced in Section 1.2.2 we can replace the constraint f − λ ≥ 0 with
a stronger condition, which is (appropriately truncated) an SDP, by requiring that
f −λ≥ 0 lies in the quadratic module defined by the gi:

f −λ= s0 +
m∑

i=1

gisi ≥ 0 (6.9)

where

s j ∈ Σ[x] :=

¨
h : h(x) =

ℓ∑
i=1

pi(x)
2 for some ℓ≥ 0, pi ∈ R[x]

«
.

Note that we are still working with binary variables, i.e., we can assume that
all appearing polynomials are square-free, by substituting x2 = x . The equality
(6.9) thus denotes the equivalence of f − λ and s0 +

∑m
i=1 gisi modulo the ideal

〈x i j − x2
i j : i j〉.

The set Σ[x] is a convex cone, and can be modelled using semidefinite pro-
gramming, if we restrict the degree of the appearing polynomials. For this, let
[x]d denote the vector of monomials up to degree d, and R[x]≤d the set of poly-
nomials up to degree d. Then we can easily see by the spectral decomposition of
positive semidefinite matrices, that

Σ[x]≤d :={s : s(x) =
ℓ∑

i=1

pi(x)
2 for some ℓ≥ 0, pi ∈ R[x]≤d}

={s : s(x) = [x]Td M[x]d for some M ≽ 0}. (6.10)

The bound we obtain from (6.9) by restricting all appearing monomials to
at most degree 2d we call the dth level of the Lasserre hierarchy of the problem,
denoted by Las2d , as we defined in Section 6.9. We do this by restricting s0 ∈
Σ[x]≤d and si ∈ Σ[x]≤� 2d−deg(gi )

2

�, making sure that deg(s0) ≤ 2d and deg(gisi) ≤
2d.

General Flags-Algebras as Limits of Polynomials. In general, we may have
more complex predicates in flag-models than the edge predicate for graphs, but
they can always be summarized as the set of all valid relations in the model. In
the case of graphs, we have one predicate determining which edges appear in the
graph. In the graph setting we introduced one variable for every possible edge,
and we do the same thing in the general case: We introduce one binary variable
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for every possible relation in the flag-model, potentially up to given equivalence
classes such as x i j = x ji .

Thus, we have for every predicate Pj in the model, taking m j arguments for
j = 1, . . . , k, a set of binary variables of the form

x
Pj

i1...imj
= x

Pj

i
∈ {0,1},

where i ∈ [n]m j . Here we may in general allow duplicate indices, and the order
of indices may differentiate variables as well.

This results in a natural action on R[x] = R[x
Pj

i
: i ∈ [n]m j for j = 1, . . . , k],

where {P1, . . . , Pk} is the set of predicates of the current theory, given by

σ(x
Pj

i
) = σ(x

Pj

i1...imj
) = x

Pj

σ(i1)...σ(imj
) = x

Pj

σ(i)
for i = (i1, . . . , im j

) ∈ [n]m j ,

for a given σ ∈ Sn. This action is then extended to polynomials in the obvious
way. We define R[x]Sn as the ring of polynomials invariant under this action as
in the case of graphs.

We can now easily relate non-induced and induced flags to (limits of) polyno-
mials, as we did in the example above for triangle free graphs.

Lemma 6.6. Let F be a given flag on m vertices, and let R j(F) ⊆ [m]m j be the sets
of valid relations for predicate Pj in F. Then

F(x) = lim
n7→∞

k∏
j=1

1
n!

∑
σ∈Sn

∏

i∈R j(F)

x
Pj

σ(i)

and

Find(x) =
|V (F)|!
|Aut(F)| lim

n7→∞

k∏
j=1

1
n!

∑
σ∈Sn

∏

i∈R j(F)

x
Pj

σ(i)

∏

i∈[m]mj \R j(F)

(1− x
Pj

σ(i)
),

Here x is the vector of variables corresponding to the relations in Mn for each n, for
the sequence of convergent models M.

Proof. Straightforward translations of their definitions.

Example 6.7. Let us take a look at a simple example: The density of a path with
two edges P2 = ({1, 2,3}, {12,23}). There is only one predicate Pedge for graphs
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indicating edges in a graph, and the path P2 has two valid relations Redge(P2) =
{12,23}. Thus, the (limit of the) non-induced density of the path is exactly

non−ind = lim
n→∞

1
3

1�n
3

�
∑

1≤i< j<k≤n

(x i j x ik + x i j x jk + x ik x jk)

evaluated for each n at the binary x corresponding to the edges of the nth graph
of the sequence G. In contrast, the induced density of the same graph is

ind = lim
n→∞

1�n
3

�
∑

1≤i< j<k≤n

(x i j x ik(1− x jk) + x i j(1− x ik)x jk + (1− x i j)x ik x jk)

evaluated on the same x .

6.6 Harmonic Flags: The Fourier Expansion of Quantum
Flags

We show that there is yet another equivalent way to define flags in the limit: har-
monic (or zonal spherical) flags. This is, to our knowledge, a novel idea. We will
not go into much depth here in this thesis, but this approach opens up possibil-
ities of Fourier analysis in extremal combinatorics in the future. In recent years,
Fourier analysis has been a crucial component in the development of major results
in coding theory, energy minimization, and packing problems. Bochner’s theorem
[Boc32] is both the basis of Cohn and Kumar’s proofs of universal optimality of
points on spheres and in Euclidian space [CK06], as well as the Cohn-Elkies sphere
packing bound [CE03]. This in turn lead to Viazovska solving the sphere packing
problem in dimension 8 [Via17], and was soon followed up, together with Cohn,
Kumar, Miller and Radchenko, by the solution of the problem in dimension 24
[Coh+17]. We generalize Bochner’s theorem for flags in terms of harmonic flags.
Later on, in Chapter 8 we will investigate profiles of pairs of harmonic flags, and
see that optimization over this basis has computational advantages.

For the setting of optimization over the boolean hypercube, we refer the reader
to [SL21] for details.

Let Mn = {models on the vertices [n]}. We define an inner product between
quantum flags by

〈F, G〉 := lim
n→∞

1
|Mn|

∑
M∈Mn

F(M)G(M),
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where F(M) (resp. G(M)) denotes the density of F (resp. G) in M . Note how
this is the analogue to the inner product of the uniform probability measure on
polynomials over the binary hypercube Bn = {0, 1}n= (Z/2Z)n, which is given by

〈p, q〉= 1
2n

∑
x∈Bn

p(x)q(x).

To apply techniques from Fourier analysis to (limits of) graphs, we first need
to turn the set of graph sequences into an abelian group. Let G, H be graph
sequences, where we assume, without loss of generality, that |V (Gn)| = |V (Hn)|
for each n, and the graphs in the sequence are constructed by adding vertices and
edges to the preceding graph. We define

G +H := (Gn +Hn)
∞
n=1 := ((V (Gn), E(Gn)∆E(Hn)))

∞
n=1 ,

where ∆ denotes the symmetric difference of sets.
This way we identify the set of limits of graph sequences with a subset of

the (countably) infinite binary hypercube (Z/2Z)ℵ0 , containing the vectors corre-
sponding to convergent graph sequences.

Remark 6.8. If both sequences G and H converge (i.e. all subgraph densities
converge as n approaches infinity), then G + H is not necessarily a convergent
sequence. Consider, for example, the graph sequences constructed this way: For
every n, we add a single new vertex to the previous graph, and, by uniformly
random choice, connect it to either all even or all odd vertices coming before.
This sequence clearly converges, and the edge density in this sequence of graphs
approaches 1

2 . If we now construct a second graph analogously, but now choos-
ing odd and even corresponding to the random choices in the first sequence, we
obtain another randomly constructed convergent graph sequence, since the first
sequence was constructed randomly. This way, we can "steer" the edge density in
the sum G +H to follow a curve moving arbitrarily close to 0 and 1 in endless
repetition.

It remains to be seen in further research whether there is a more natural way
to turn the set of convergent graph sequences into a group, without making the
set bigger.

We obtain an orthonormal basis of characters (see, for example, [SL21; Val08])
with respect to this inner product by defining

χF (M) := lim
n→∞(−1)E(F)∩E(Mn)
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for each fully labeled flag F and increasing sequence of flags M. As we assumed
that the flags in the sequence build upon each other, this function is well-defined.
The characters are multiplicative for the defined group action, since

χF (M+N ) = lim
n→∞(−1)E(F)∩(E(Mn)∆E(Nn))

= lim
n→∞(−1)(E(F)∩E(Mn))∆(E(F)∩E(Nn))

= lim
n→∞(−1)(E(F)∩E(Mn))(−1)(E(F)∩E(Nn))

= χF (M)χF (N ).

The character χ∅ corresponding to the empty graph ∅ is the trivial character
of the group, i.e. χ∅ ≡ 0. For every non-trivial character χF we have 〈χF ,χ∅〉= 0,
as there exists an N with χF (N) ̸= 1 and

χF (N) lim
n→∞

∑
M∈Mn

χF (M) = lim
n→∞

∑
M∈Mn

χF (N)χF (M)

= lim
n→∞

∑
M∈Mn

χF (N +M)

= lim
n→∞

∑
M∈Mn

χF (M).

This implies that the characters are orthonormal, since

〈χF ,χF 〉= lim
n→∞

1
|Mn|

∑
M∈Mn

χF (M)χF (M) = lim
n→∞

1
|Mn|

∑
M∈Mn

1= 1,

and, for different F , F ′,

〈χF ,χ ′F 〉= lim
n→∞

1
|Mn|

∑
M∈Mn

χF (M)χF ′(M)

= lim
n→∞

1
|Mn|

∑
M∈Mn

χF+F ′(M)

= 0,

since F+ F ′ ̸=∅ and thus χF+F ′ is non-trivial. Here the sum of two (fully labeled)
flags with potentially different labels results in the graph with vertex set given by
the union of the vertices of F and F ′, and edges given by the symmetric difference
of their edge sets.
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As with induced and non-induced flags, χF corresponds to a (limit of) poly-
nomials in binary variables corresponding to edges in an increasing sequence of
models M:

χF (x) = lim
n→∞

∏
e∈E(F)

(1− 2xe), (6.11)

where, for every n, the variable xe corresponds to the edge e in Mn.
Similarly to Section 6.5, we can symmetrize this basis over the unlabeled ver-

tices to obtain harmonic (or character) flags, given by

χF := lim
n→∞

1
|S[n]\T |

∑
σ∈S[n]\T

χσ(F),

where T is the set of labeled vertices of F . If the flag F is fully unlabeled, this
generalizes the zonal spherical functions (with pole ∅) of the binary hypercube
by splitting them further into the orbits of flags.

What happens if we multiply two harmonic flags? Since the variables xe are
binary, we know that (1−2xe) is either 1 or −1, and thus (1−2xe)2 = 1 for every
"edge" e. This results in a multiplication similar to the non-induced case, but now
fully labeled edges disappear in the product, if they appear in both factors. This
corresponds to the "+" operator defined above, i.e. for fully labeled flags we have
χFχF ′ = χF+F ′ . For example, we have

χ χ = χ ,

and
χ 1

2

χ 1 = χ 1
2

as with non-induced flags, but we also have

χ 1

2

χ 12

3

= χ 1
2

3

and
χ 1

2 3

χ 1

2 3

= χ∅ = 1.

Unlabeling a harmonic flag is just as easy as in the non-induced case: Since the
normalization was chosen in a way that the constant term in (6.11) is exactly one
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in any harmonic flag, unlabeling simply removes the labels here as well. Later on
in Chapter 8 we will see that, if one starts with the basis of harmonic flags instead
of the monomial basis, we obtain an equivalent hierarchy with computational
advantages.

Fourier Decomposition of Flags. As non-induced flags (as well as induced flags)
form a basis of the flag algebra, we can rewrite harmonic flags in terms of non-
induced flags.

Proposition 6.9. Let χF be an unlabeled harmonic flag. Then χF is exactly the
quantum flag given by

χF =
∑

G:E(G)⊆E(F)

(−2)|E(G)|G. (6.12)

Proof. We expand (6.11) in terms of monomials for F where we label all vertices,
and then unlabel both sides of the equation.

The inverse of this operation, expressing a quantum flag F in the harmonic
basis, is the Fourier expansion of F , and if F consists only of unlabeled flags, this
results in the Fourier expansion of F in terms of harmonic flags χG .

Proposition 6.10. Let F be an unlabeled non-induced flag. The Fourier expansion
of F is

F =
1

2|E(F)|
∑

G:E(G)⊆E(F)

(−1)|E(G)|χG . (6.13)

Proof. We proof this equation via induction over |E(F)|. If |E(F)| = 0, then F is
the empty flag ∅≡ 1, and we have

∅= χ∅

by definition.
Next, assume that the proposition holds for all G with |E(G)| < |E(F)|. Note

that F itself appears in χF with coefficient (−2)|E(F)| by Proposition 6.9. Then, by
induction and Proposition 6.9 we have

F =
1

(−2)|E(F)|
χF −

�
1

(−2)|E(F)|
χF − F

�

=
1

(−2)|E(F)|

 
χF −

∑
G:E(G)⊂E(F)

(−2)|E(G)|G

!
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=
1

(−2)|E(F)|

 
χF −

∑
G:E(G)⊂E(F)

(−2)|E(G)|
1

2|E(G)|
∑

H:E(H)⊆E(G)

(−1)|E(H)|χH

!

=
1

(−2)|E(F)|

 
χF −

∑
G,H:E(H)⊆E(G)⊂E(F)

(−1)|E(G)|+|E(H)|χH

!

=
1

(−2)|E(F)|

 
χF −

∑
H:E(H)⊂E(F)

(−1)|E(H)|χH

∑
G:E(H)⊆E(G)⊂E(F)

(−1)|E(G)|
!

(6.14)

We can simplify the final sum to
∑

G:E(H)⊆E(G)⊂E(F)

(−1)|E(G)| = −(−1)|E(F)| +
∑

G:E(H)⊆E(G)⊆E(F)

(−1)|E(G)|

= −(−1)|E(F)| + (−1)|E(H)|
|E(F)|−|E(H)|∑

i=0

�|E(F)| − |E(H)|
i

�
(−1)i

= −(−1)|E(F)|. (6.15)

The last step follows from
n∑

i=0

�
n
i

�
(−1)i = 〈χ0,χ1〉= 0,

where χ0 and χ1 denote the characters of the boolean hypercube of the all zero
and all-one vector respectively.

Finally, combining equations (6.14) and (6.15) proves the proposition.

Example 6.11. In the case of graphs, we have

χ =∅− 2 · 3 + 22 · 3 − 23

and
=

1
23

�
∅− 3χ + 3χ −χ

�

as examples of (6.11) and (6.12) respectively.

We can now introduce and characterize positive semidefinite quantum flags (or
quantum flags of positive type), using a special case of Bochner’s theorem [Boc32].

Theorem 6.12 (Bochner’s theorem for flags). Let F be a quantum flag. We call
F positive semidefinite, if for every set S of convergent graph sequences, such that
G +H converges for all G,H ∈ S, we have

(F(G +H))G,H∈S ≽ 0.
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F is positive semidefinite if and only if all coefficients in its Fourier expansion, as
given in Proposition 6.10, are nonnegative.

Proof. The first direction follows from the multiplicativity of characters: charac-
ters are positive definite, as for any fully labeled flag F the matrix

(χF (G +H))G,H∈S = (χF (G)χF (H))G,H∈S

is the outer product of the vector (χF (G))G∈S .
The other direction follows immediately from the orthonormality of the char-

acters.

A Natural Recursion of Sidorenko’s Conjecture. The Fourier expansion al-
lows for a very natural recursive formulation of some open problems, such as
Sidorenko’s conjecture [Sid93]. The advantage here is that the Fourier expansion
results in a linear combination only containing flags with the same set or subset of
edges. (Rewriting a problem in induced flags instead does the opposite, including
flags with a superset of edges.) Sidorenko’s conjecture states that

H − |E(H)| ≥ 0 (6.16)

for any bipartite graph H, if we work in the non-induced setting. As this inequality
is clearly sharp for random graphs, where every edge is chosen independently with
the same probability, this conjecture states that these random graphs minimize
the density of every bipartite graph, as the number of vertices of the random
graph approaches infinity. Sidorenko’s conjecture is proven for various families
of graphs, including some graphs coming from recursive constructions based on
trees in [KLL15]. But the general conjecture remains open, despite attempts by
various groups of authors (see [CL18] for the most recent progress). Recently, it
was proven by the authors of [Ble+20a] that the cases where H are paths with an
odd number of edges cannot be proven purely by flag SOS.

Here we provide a novel (nearly) recursive formulation for the general con-
jecture based on harmonic flags. The recursion’s usefulness still has to be proven.

Combining the two Propositions 6.10 and 6.9, we can rewrite a flag F as sum
of the harmonic flag χF and sub-flags of F .

Proposition 6.13. For an unlabeled, non-induced flag F we have

F =
1

(−2)|E(F)|
χF +

∑
G:E(G)⊂E(F)

2|E(G)|−|E(F)|(−1)|E(G)|+|E(F)|G
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Proof. We first apply Proposition 6.10, then Proposition 6.9, and simplify the re-
sulting terms analogously to the proof of Proposition 6.10.

Since both graphs appearing in Sidorenko’s conjecture have the same num-
ber of edges, we can pair up graphs in both of their decompositions after applying
this transformation, giving us a (nearly) recursive formulation of Sidorenko’s con-
jecture. We can rewrite H − |E(H)| as a linear combination of terms of the same
form coming from graphs with fewer edges, if we add two harmonic flags to the
problem.

H − |E(H)| =
1

(−2)|E(H)|

�
χH −χ |E(H)|

�

+
∑

G:E(G)⊂E(H)

2|E(G)|−|E(H)|(−1)|E(G)|+|E(H)|
�
G − |E(G)|� .

For example, we have

− =
1
8

�
−χ +χ

�

+ − .

Note here that all subgraphs G of H are again bipartite, so the appearing terms in
the parentheses are indeed again cases of Sidorenko’s conjecture, even if some of
them appear with a negative sign.

While this recursive formulation of Sidorenko’s conjecture does cover all cases,
it is not clear at this point whether this will actually help to prove it.



7
Gatermann-Parrilo Reduction for
Polynomial Optimization with Sn

Symmetry

The basic idea of symmetry reduction is that for a symmetric convex problem, we
can symmetrize a feasible solution by averaging over the action of the symmetry
group to get a symmetric feasible solution, which has the same objective value.
In this chapter we are first going to give the basics for the case of polynomial
optimization as explained in detail in [GP04] for a general group G, and then
we will focus on the specific case of G = Sn in Section 7.2. In examples, we
will follow the well-understood case of polynomials in variables x i with a single
index, where Sn acts on variables by σ(x i) = xσ(i). For this case there exists a
great deal of additional theory involving primary and secondary invariants (see,
for example, Theorem 6.2 and Section 8.2 in [GP04]). Later on, in Chapter 8, we
work with a different, more complicated action of Sn. Applying Theorem 6.2 of
[GP04] in this setting seems prohibitively complicated in practice, which is why
we restrict ourselves to the more straightforward basic idea of symmetry reduction
for polynomials as described by Theorem 4.1 in [GP04].

In this chapter we will follow a simple running example: When is a polynomial

155
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in three binary variables x1, x2, x3 ∈ {0,1} nonnegative, if it is of the form

p = a+ b(x1 + x2 + x3) + c(x1 x2 + x1 x3 + x2 x3) + d x1 x2 x3.

This polynomial is invariant under the action of S3 which acts on the indices of
the variables.

7.1 Reducing Polynomial Optimization Problems

We consider a polynomial optimization problem

min
x
{ f (x) : gi(x)≥ 0 for i = 1, . . . , m},

where f and all gi are invariant under the action of a group G. This group G should
act "nicely" on the ring of polynomials R[x] (formalized in Definition 7.3), and
invariant here means that f and the gi lie in

R[x]G := { f ∈ R[x] : σ( f ) = f for all σ ∈ G}.

Given such a problem with symmetries, we can show that its semidefinite relax-
ation (modeling sums-of-squares) has a symmetric solution. Sadly, this does not
imply that all polynomials pi appearing in the sums-of-squares decomposition of
f − λ are symmetric. But what we can say is that the sums-of-squares decompo-
sition itself is symmetric, in the sense that if p2

i appears in it, then so does σ(pi)2.
More formally, if we have a sum-of-squares decomposition

f −λ= s0 +
m∑

i=1

gisi ,

then we get a symmetric sum-of-squares decomposition by

f −λ=R( f −λ) =R(s0) +
m∑

i=1

giR(si),

since R( f ) = f and R(gi) = gi .
Here R : R[x] 7→ R[x]G denotes the Reynolds operator of the action of G

on R[x], which is the linear operator that symmetrizes polynomials by averaging
them over the group G by

R( f ) :=
1
|G|

∑
σ∈G

σ( f ).
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If we pull this operator further into the sums-of-squares definition, we see that
indeed

R(si) =R

 
ℓ∑

j=1

(p j(x))
2

!
=

ℓ∑
j=1

R(p j(x)
2) =

ℓ∑
j=1

1
|G|

∑
σ∈G

σ(p j(x))
2.

Remark 7.1. While we generally do not have that R(p2
j ) =R(p j)2, note that this

step implies that the positive semidefinite matrix M in (6.10) for the SOS term
s j is fully symmetric according to the action of G on the monomial vector [X ].
Indeed, given an SOS certificate [X ]T M[X ], where M is positive semidefinite, we
can construct an invariant certificate with σ(M) = M for each σ ∈ G, where the
action of G on M is determined by the action of G on [X ]. One could now work on
the SDP side (6.10) by block-diagonalizing the algebra of invariant matrices, but
in the case of polynomial optimization, while mostly equivalent, there are some
additional tools available.

Example 7.2. We can see that sums-of-squares of symmetric polynomials are not
enough already in the case of

p = x1 + x2 + x3 − x1 x2 − x1 x3 − x2 x3 =
3
2
R((x1 − x2)

2)≥ 0,

where x i ∈ {0, 1}, which is an S3-invariant polynomial of the form

a+ b(x1 + x2 + x3) + c(x1 x2 + x1 x3 + x2 x3) + d x1 x2 x3.

But p cannot be written as sum of squared symmetric polynomials, as the only
way to get a negative coefficient before x1 x2+ x1 x3+ x2 x3 would be from a term
of the form

(a− b(x1 x2+ x1 x3+ x2 x3))
2 = a2+(b2−2ab)(x1 x2+ x1 x3+ x2 x3)+6b2 x1 x2 x3

where ab < 0. But this results in a positive constant term a2 which we cannot
eliminate anymore.

7.1.1 Representation Theory

The idea is now to find a symmetry adapted basis of R[x], which is a basis that
"behaves well" under the Reynolds operator. To define this formally, we need
some basics of representation theory. We refer the interested reader to [Ser77]
for additional details.

For everything to work, we need the action of G on R[x] to turn the ring of
polynomials into a G-module.
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Definition 7.3. Let V be a vector space over a ring R, and G a group acting on V
via a group homomorphism ρ : G→ GL(V), by

gv := ρ(g)v,

for g ∈ G and v ∈ V, where GL(V) is the general linear group of V consisting of
invertible linear functions V → V. Then V is called a G-module (over R). (Note
that ρ is exactly a linear representation of G.)

In what follows we always assume V = R[x]≤d , the space of polynomials up
to degree d. We define an inner product on V by 〈p, q〉 := cT

p cq, where cp and
cq are the coefficient vectors corresponding to p and q in the monomial basis of
R[x]≤d . This way we can further assume that the representation ρ is orthogonal,
i.e., ρ(g)−1 = ρ(g)⋆ for every g ∈ G, where the adjoint ρ(g)⋆ is the unique
operator in GL(V) with 〈ρ(g)p, q〉 = 〈p,ρ(g)⋆q〉 for all p, q ∈ R[x]≤d . This is
indeed the case for the family of problems we consider in Chapter 8, as there Sn

acts on the variables and monomials by acting on the indices of the variables,
which permutes the elements of the monomial basis. For example, in the case of
graphs, we are working with variables x i j with two indices (which correspond to
edges in a graph), and Sn acts on these by σ(x i j) = xσ(i)σ( j). This action is then
extended to monomials and polynomials, sending monomials to monomials, and
thus acts via permutations on the monomial basis of R[x]≤d .

Example 7.4. We again consider polynomials with S3 symmetry of the form

p = a+ b(x1 + x2 + x3) + c(x1 x2 + x1 x3 + x2 x3) + d x1 x2 x3

in binary variables. We can turn R[x1, x2, x3]/〈x i − x2
i : i = 1, . . . , 3〉 into an S3-

module by letting S3 act on the indices of the variables, and extending the action
to polynomials. For example, we have

(1 2)(x1 x3 + x2) = x2 x3 + x1.

The polynomials p are clearly the S3-invariant polynomials under this action.

We define submodules as subspaces of a module V that are modules them-
selves, and call the subspaces {0} and V trivial submodules. Modules that do not
have any non-trivial submodules are called irreducible.

One of the main tools of algebraic symmetry reduction is Schur’s lemma, which
we will state here, as we will make use of it explicitly in various places in this
chapter and Chapter 8.
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Lemma 7.5 (Schur’s Lemma). Let M , N be two irreducible G-modules over a ring
R. If M , N are not isomorphic, there are no non-trivial homomorphisms between M
and N. If M and N are isomorphic, and R is an algebraically closed field, then any
homomorphism between M and N is a multiple of the identity.

This Lemma allows us to decompose modules into irreducible submodules.

Theorem 7.6 (Maschke’s Theorem). Let G be a finite group, and V a non-zero
G-module. Then V decomposes into a direct sum of irreducible submodules

V =W1 ⊕ . . .⊕Wk.

We can sort the submodules by equivalency, where we call two modules equiv-
alent if there is a G-homomorphism between them.

V = (V1,1 ⊕ · · · ⊕ V1,m1
)⊕ · · · ⊕ (Vh,1 ⊕ · · · ⊕ Vh,mh

)

= V1 ⊕ . . .⊕ Vh

≃ m1T1 ⊕ . . .⊕mhTh,

where mi ∈ N0 and Ti are pairwise inequivalent irreducible G-modules. We call
the submodules

Vi = Vi,1 ⊕ · · · ⊕ Vi,mi
≃ mi Ti

the isotypic components of V. The decomposition into isotypic components is
unique, while the decomposition into irreducible submodules is not. One usu-
ally sets V1 = V G = {v ∈ V : σ(v) = v ∀σ ∈ G}, the submodule of invariant
vectors of V, and one calls the elements of the other Vi semi-invariants.

We set ni to be the dimension of Ti , and see

dimV =
h∑

i=1

mini .

In the next step we will see that we can choose a special basis of V, which block-
diagonalizes the optimization problem to blocks of sizes m1, . . . , mh, where we
often have

m1 + · · ·+mh≪ dimV.

7.1.2 Block-Diagonalization

Let ϕi : G→ O(ni) now be orthogonal representations corresponding to the irre-
ducible modules Ti .
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Definition 7.7. Let B =
¦

pi
j,k : i ∈ [h], j ∈ [ni], k ∈ [mi]

©
be a basis of V, where

the elements for each fixed i span the isotypic components

Vi = span
¦

pi
j,k : j ∈ [ni], k ∈ [mi]

©
,

and

Vi,k = span
¦

pi
j,k : j ∈ [ni]

©
≃ Ti

are the copies of the irreducible modules Ti . We call B a symmetry adapted basis
for the G-module V, if each basis of each copy Vi,k of the irreducible module Ti

transforms according to the same earlier chosen representation ϕi of Ti . Formally,
we want the vector of polynomials (pi

1,k, . . . , pi
ni ,k
) to be ρ-ϕi-equivariant for all

i, k, i.e. 


ρ(g)pi
1,k

ρ(g)pi
2,k

...
ρ(g)pi

ni ,k


= ϕi(g)




pi
1,k

pi
2,k
...

pi
ni ,k


 for all g ∈ G.

As the original representation ρ is assumed to be orthogonal, we can always
work with an orthonormal symmetry adapted basis (i.e., the coefficient vectors of
the polynomials in the basis are pairwise orthogonal and normalized).

Rewriting a symmetric polynomial optimization problem in such a basis block-
diagonalizes the problem, as described in Theorem 7.8. Since [GP04] does not give
a detailed proof, and for completeness, we choose to give our own proof of the
theorem, based on the proof for semidefinite programming in [Pol19].

Theorem 7.8 (Gatermann-Parrilo symmetry reduction, [GP04, Section 5]). Let
f ∈ R[x]G be a G-invariant polynomial that can be written as a sum-of-squares
where each term has at most degree d. If {pi

j,k ∈ R[x] : i ∈ [h], j ∈ [ni], k ∈ [mi]}
is an orthonormal symmetry adapted basis of R[x]≤d seen as G-module, then f is
of the form

f =
h∑

i=1

ℓi∑
t=1

R

 � mi∑
k=1

αi,t,kpi
1,k

�2!
,

for some ℓ ∈ Nh. Equivalently, we can write

f =
h∑

i=1

〈Mi , Pi〉,
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where Mi ∈ Smi
+ are positive semidefinite matrices, and

Pi =
�
R(pi

1,kpi
1,l)
�

k,l=1,...,mi
∈ R[x]mi×mi . (7.1)

None of the (polynomial) entries of the Pi are equal to the zero polynomial.

Proof. This proof is based on the assumption that the element pi
j,k of the symmetry

adapted basis lies in the kth copy of the irreducible module Ti , which was given
by

Vi,k = span{pi
j,k : j ∈ [ni]} ≃ Ti ,

and repeatedly applying Schur’s Lemma 7.5 to homomorphisms between irre-
ducible modules.

In this proof we interchangeably interpret polynomials either as polynomials
or as their coefficient vectors in the standard monomial basis, where the usage
should be clear from context.

For each monomial m we define its orbit under G as

o = G(m) := {σ(m): σ ∈ G} ⊂ R[x].
We can define the indicator matrix Ao of each orbit o, which is indexed by mono-
mials m1, m2 of up to degree d, by

(Ao)m1,m2
=

(
1 if m1m2 ∈ o,

0 else.

Then clearly

R(pq) =
∑

o orbit

�
pT Aoq

∑
m∈o

m

�
,

i.e., pT Aoq is the coefficient corresponding to the orbit o in the symmetrized prod-
uct R(pq) of any two polynomials p, q ∈ R[x]≤d . As the symmetry adapted basis
is orthonormal (as vectors), we can rewrite

(pi
j,k)

T Aopr
s,t = (p

i
j,k)

T
�
Aopr

s,t

����
Vi,k

, (7.2)

where we project onto the kth copy Vi,k of the ith irreducible submodule. The
function

Vr,t → Vi,k : q 7→ (Aoq)|Vi,k

is a homomorphism between submodules of G, as R(pσ(q)) = R(σ−1(p)q) im-
plies (Aoσ(q))|Vi,k

= σ
�
(Aoq)|Vi,k

�
for σ ∈ G.
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Since Vr,t and Vi,k are irreducible, Schur’s Lemma 7.5 implies that this ho-
momorphism is identical to zero if it is between non-equivalent submodules, so
R(pi

⋆,⋆p
j
⋆,⋆) = 0 for all i ̸= j (where the ⋆’s stand for arbitrary indices). Further-

more, if the modules are equivalent (i.e., i = j), the homomorphisms in (7.2)
have to be multiples of the identity. The definition of symmetry adapted basis
fixes this identity to be exactly the function which sends pi

j,k to pi
s,k, because the

identity is unique between equivalent irreducible modules. So, if j ̸= s ∈ [ni] we
see that

(pi
j,k)

T
�
Aopi

s,t

����
Vi,k

= β(pi
j,k)

T pi
s,k = 0 for some β ∈ R,

which is zero since the basis is orthonormal. Thus, R(pi
j,⋆p

i
s,⋆) = 0 if j ̸= s.

At this point we have shown that the swap of basis block-diagonalizes the
algebra into the blocks �

R(pi
j,kpi

j,l)
�

k,l∈[mi]
.

What remains to be seen is that the remaining blocks are exact copies of each other,
if they come from different basis elements of the same irreducible submodule, i.e.,
R(pi

1,kpi
1,l) = R(pi

j,kpi
j,l) for all j. By definition of symmetry adapted basis, the

identity between Vi,l and Vi,k sends pi
j,l to pi

j,k, so there is a constant scalar αo

independent of j such that
�
Aopi

j,l

����
Vi,k

= αopi
j,k.

Consequently,
(pi

j,k)
T Aopi

j,l = αo(p
i
j,k)

T pi
j,k = αo,

for each j, as the basis is orthonormal. As this holds for every orbit o, we find that

R(pi
j,kpi

j,l) =
∑

o orbit

�
αo

∑
m∈o

m

�

is independent of the choice of j ∈ [ni]. Hence, we get multiple copies of the
same blocks, and can restrict ourselves the one where j = 1.

None of the entries R(pi
1,kpi

1,l) can be zero, since Maschke’s theorem 7.6 im-

plies that dim(EndG(R[x]≤d)) =
∑h

i=1 m2
i , the total number of coefficients of the

Pi . As the block-diagonalization is done via a swap of basis, we cannot reduce the
number of nonzero coefficients further.

This symmetry reduced SDP can be significantly easier to solve, as often∑
i mi ≪ dim(R[x]≤d). Interesting to note is that one does not need to work with
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orthogonal representations ϕi , as only the first elements pi
1,k of each irreducible

submodule appear in the final decomposition, and we can always extend from
those elements to a full orthogonal basis. Normalization just adds a positive
factor to each block, not changing the validity of the theorem. In general, a real
symmetry adapted basis does not always exist (for some groups we may need poly-
nomials with complex or quaternion coefficients), but for our applications there
will always exist a real symmetry adapted basis. For the more complicated cases
where there exists no real symmetry adapted basis, we refer the reader to [GP04]
[Section 4]. If one instead works with polynomials in complex coefficients and
variables, optimizing over Hermitian sums-of-squares [DAn02], [Definition IV.5.1],
one can always find a complex symmetry adapted basis. For a detailed example
of such a block-diagonalization, applied to the problem of packing convex bodies
with tetrahedral symmetries, we refer the reader to [Dos+17].

Later on, in Chapter 9, we show that in some cases we can obtain a significantly
better symmetry reduction by breaking Schur’s Lemma, i.e., exploiting the fact that
we are optimizing over binary variables to find equivalent irreducible submodules
which are orthogonal in the sense that pi

1,kpi
1,l =R(pi

1,kpi
1,l) = 0.

7.2 Representation Theory of the Symmetric Group

The symmetry of flag algebras is given by the (limit of the) symmetric group Sn.
Thus, if we want to exploit it, we need to understand the irreducible Sn-modules.
These are well studied, and we will give the main details here. We refer to [Sag13]
for additional details, and mostly follow the way things are defined there. The
notation, especially the one used in Section 7.2.3, is in part new and makes the
definition of the homomorphisms ϑT easier.

7.2.1 Young Tableaux, Tabloids and Permutation Modules

There are as many irreducible G-modules as there are conjugacy classes of G.
For permutations, these are exactly the cycle types of the permutations, which
correspond to partitions of n. We call λ = (λ1, . . . ,λk) ∈ Nk a partition if λ1 ≥
λ2 ≥ · · · ≥ λk > 0. We use the notations |λ| :=∑i λi and write λ ⊢ n if |λ|= n.

Each partition defines a shape, a set of coordinates, or boxes arranged on a
grid

shape(λ) := {(i, j) : i = 1, . . . , k; j = 1, . . . ,λi}.



164 Symmetry Reduction in Convex Opt. with Applications in Combinatorics

If we fill these boxes bijectively with the integers 1 trough |λ|, we call them a
Young-tableau of shape λ. For example, let λ= (4,2, 2), then

t =
2 3 6 5
1 8
4 7

is a Young-tableau of shape λ.
Two tableaux t1 and t2 of the same shape are called row-equivalent, written

t1 ∼ t2, if, for every i ∈ [k], the set of λi elements in the ith row of t1 contains
the same elements as the set of elements in the corresponding ith row of t2. We
call the equivalence classes λ-tabloids, and define

{t} := { t̂ : t̂ ∼ t}.

To differentiate tableaux from tabloids, we write tabloids using horizontal lines
only instead of boxes, e.g., for the tableau above we have

{t}=
2 3 5 6
1 8
4 7

.

The symmetric group Sn acts on Young-tableaux by permuting its entries,
which extends to an action on tabloids. For each partition λ the vector space
spanned by the λ-tabloids forms an Sn-module called permutation module,

Mλ := R{{t1}, . . . , {th}}

where the {t i} form a complete list of λ-tabloids.

Example 7.9. Consider again the case of polynomials

p = a+ b(x1 + x2 + x3) + c(x1 x2 + x1 x3 + x2 x3) + d x1 x2 x3

in binary variables. The ring V = R[x1, x2, x3]/〈x i − x2
i : i = 1, . . . , 3〉, seen as

S3-module, decomposes into a direct sum of 4 permutation modules:

V = 2M (3) ⊕ 2M (2,1).
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Indeed, it is easy to see that the spans of orbits of monomials are each isomor-
phic to a permutation module:

span(1)≃ M (3),

span(x1, x2, x3)≃ M (2,1),

span(x1 x2, x1 x3, x2 x3)≃ M (2,1),

span(x1 x2 x3)≃ M (3),

by simply putting all appearing indices in a monomial into one row of a tabloid,
and all indices that do not appear in the other. For example, the monomial x2 x3

corresponds to the tabloid
2 3
1 ∈ M (2,1).

7.2.2 Irreducible Specht Modules

While permutation modules are reducible, there is a natural way to define an
irreducible submodule of each Mλ called Specht module, which are pairwise in-
equivalent (and thus are a full set of all irreducible submodules of Sn).

To define these, we need to define the column stabilizer Ct of a tableau t as
the group

Ct := SC1
× · · · × SCℓ ,

where the Ci are the columns of t.

Definition 7.10. Let λ be a partition of n. The Specht module corresponding to λ
is

Sλ := span{et : t is a tableau of shape λ} ⊆ Mλ,

where et denotes the polytabloid

et :=
∑
σ∈Ct

sgn(σ){σt}.

Example 7.11. Let λ= (4, 2) and t = 1 2 3 4
5 6 . Then Ct = S{1,5}×S{2,6}×S{3}×

S{4} and

et =
1 2 3 4
5 6 − 5 2 3 4

1 6 − 1 6 3 4
5 2 + 5 6 3 4

1 2 ∈ Mλ.
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7.2.3 A Symmetry Adapted Basis of Permutation Modules

The main symmetry reduction later in this paper will first (try to) decompose the
set of polynomials as direct sum of permutation modules, since their full decom-
position into Specht modules is well-understood. The decomposition is based on
semistandard generalized Young-tableaux, which we now define.

We call a tableau t of shape µ ⊢ n where we allow repeated entries generalized,
and we call such a tableau semistandard if its columns are strictly increasing and
its rows non-decreasing. We call the vector

λ= (number of 1s in t, number of 2s in t, . . . ) ⊢ n

the content of t. For example,
1 1 2 3
3 3
4

is a semistandard generalized tableau of shape µ = (4, 2,1) and content λ =
(2, 1,3, 1).

If the content µ is a partition itself (i.e., ordered), then it is easy to see that
such a tableau can only exist, if µ dominates λ, written µ⊵ λ i.e.

µ1 + · · ·+µi ≥ λ1 + · · ·+λi for all i ≥ 1,

where λi , respectively µi , are zero if i is outside their index range.

Theorem 7.12. A permutation module of shape λ decomposes into the (irreducible)
Specht modules

Mλ ≃
⊕
µ⊵λ

KµλSµ.

Here the multiplicities are given by the Kostka-numbers Kµλ, which are defined as
the number of semistandard generalized Young-tableaux of shape µ and content λ.

Every semistandard generalized Young-tableaux T (of shape µ and content λ)
defines an isomorphism between Mµ and a submodule of Mλ (and with that also
of Sµ ⊆ Mµ to its image). One can define it like this: First, given T and a tableau
t of shape µ, we can send it to a tabloid of shape λ by moving entry t(i, j) of t to
the T (i, j)th row. Then, if we sum these up over the tabloid {T}, this function is
constant over all elements of {t} and defines an isomorphism between Mµ and a
submodule of Mλ:
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ϑT : Mµ→ Mλ, {t} 7→
∑

T ′∈{T}

�
tableau with entry t(i, j) in its T ′(i, j)th row

	
.

To shorten the notation, we define for a generalized tableau T of shape µ and
content λ and a tableau t of shape µ the tabloid

t[T] := {tableau with entry t(i, j) in its T (i, j)th row},

i.e., we have ϑT ({t}) =
∑

T ′∈{T} t[T ′].

Example 7.13. Let µ = (3, 2) ⊵ λ = (2, 2,1). We fix a semistandard tableau of
shape µ and content λ

T = 1 1 2
2 3 .

Then the row-equivalency class {T} contains six generalized tableaux, and

ϑT

�
a b c
d e

�
=

a b
c d
e

+
a c
b d
e

+
b c
a d
e

+
a b
c e
d

+
a c
b e
d

+
b c
a e
d

.

The images of the Specht module Sµ under these homomorphisms for all
semistandard tableaux decompose Mλ fully into irreducible submodules. I.e., the
homomorphisms given by semistandard tableaux form a basis of the multiplicity
space Hom(Sµ, Mλ).

To now obtain a symmetry adapted basis, one needs to choose the same or-
dered orthogonal basis for all copies of the same Specht module. As mentioned in
Section 7.1, we only need the first basis element of each copy, which means that
we can work with the images of one fixed polytabloid for each µ.

Example 7.14. We can now fully exploit the symmetry of polynomials of the form

p = a+ b(x1 + x2 + x3) + c(x1 x2 + x1 x3 + x2 x3) + d x1 x2 x3

in binary variables. We saw in Example 7.9 that the corresponding polynomial
ring decomposes into the 4 permutation modules

V = 2M (3) ⊕ 2M (2,1).
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The two permutation modules can now be decomposed further:

M (3) ≃ S(3),

M (2,1) ≃ S(3) ⊕ S(2,1),

as the corresponding semistandard tableaux are

1 1 1 , 1 1 2 , and 1 1
2 .

This means that we can block-diagonalize the SOS-SDP into a block of size 4 and
a block of size 2, corresponding to S(3) and S(2,1) respectively. The symmetry
adapted bases of the two blocks are given by

B1 = {1, x1 + x2 + x3, x1 x2 + x1 x3 + x2 x3, x1 x2 x3},
B2 = {x2 − x1, x1 x3 − x2 x3}.

As the third level of the Lasserre hierarchy is exact for problems in three binary
variables, this then tells us that p is nonnegative if and only if it is of the form

p = 〈M1, P1〉+ 〈M2, P2〉

for positive semidefinite matrices M1 ∈ S4
+ and M2 ∈ S2

+, where

Pi =R(BiB
T
i ).

7.2.4 Multiplying and Symmetrizing the Elements of the Symmetry
Adapted Basis

To obtain the symmetry reduced SDP, we now need to multiply and symmetrize
the elements of the symmetry adapted basis. One can do this efficiently using
an algorithm by Dion Gijswijt described in [Gij09]. There is another alternative
algorithm by Litjens, Polak, and Schrijver, see Appendix 3.4.1 in Sven Polak’s thesis
[Pol19]. There the algorithm is defined for a different specific application to error
correcting codes, which we here generalize.

While we generally do not have a product defined between tabloids, we need
to calculate the matrices Pi (7.1), with entries given by R(pi

j,kpi
j,l), to obtain the

symmetry reduced SDP. Interestingly, while calculating pi
j,kpi

j,l seems hard (due
to exponentially many terms in the polytabloid), there are polynomial time (in
n, for fixed maximum number of parts of λ1 and λ2) algorithms for calculating
R(pi

j,kpi
j,l), if one can apply R efficiently.
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We assume now that we have two isomorphisms φ1 and φ2 from Mλ1
and

Mλ2
respectively to submodules of an Sn-module. We may have λ1 = λ2. Let

µ ⊵ λ1,λ2, and consider two semistandard generalized tableaux T1 and T2 both
with content µ and of shape λ1 and λ2 respectively. Fix a tableau t of shape µ.
Then the coefficients of Pi (7.1) are of the form

p =R(φ1(φT1
(et))φ2(φT2

(et))).

By linearity, we can decompose this in the form

p =
∑

{t1} tabloid of shape λ1,
{t2} tabloid of shape λ2

ĉt1,t2
R(φ1({t1})φ2({t2})),

and since R symmetrizes over all of Sn, we can reduce this to a sum over a fixed
tabloid {t1}:

p =
∑

{t2}tabloid of shape λ2

c{t2}R(φ1({t1})φ2({t2})).

With the same argument we can reduce this further to a sum over the equivalence
classes of ordered pairs of tabloids, where two pairs ({t1}, {t2}) and ({t3}, {t4})
are equivalent, if there is a σ ∈ Sn such that (σ{t1},σ{t2}) = ({t3}, {t4}). It is
easy to see that these equivalence classes are exactly determined by the way the
two tabloids overlap, i.e., how many elements of each row of one appear in each
row of the other.

To formalize this, the overlap of two tabloids {t1}, {t2} is the matrix

overlap({t1}, {t2}) := (|row({t1}, i)∩ row({t2}, j)|)mi, j=1 ,

where m is the maximum number of parts of λ1 and λ2, and row({t}, i) ⊆ [n] is
the set of elements in the ith row of the tabloid {t}.

We can equivalently describe these overlaps using monomials by

overlap({t1}, {t2})↔
m∏

i, j=1

x
overlap({t1},{t2})i j

i j ,

we can apply one of the two algorithms described in [Gij09; Pol19] to calculate
a polynomial that describes the overlaps and multiplicities needed to calculate p.



170 Symmetry Reduction in Convex Opt. with Applications in Combinatorics

These algorithms are based on polynomial addition, multiplication and differenti-
ation, and can be done in polynomial time (for fixed m). Indeed, the sum defining
p over pairs of tabloids up to Sn is completely described by the polynomial

 
m−1∏
j=1

m∏
s= j+1

(ds→ j)r(s, j)(d⋆j→s)
u(s, j)

r(s, j)!u(s, j)!

!
· Pµ(X ),

where

Pµ(X ) :=
m∏

k=1

(k! det((x i j)
k
i, j=1))

µk−µk+1 ,

ds→ j :=
k∑

i=1

xsi
∂

∂ x ji
,

d⋆j→s :=
k∑

i=1

x is
∂

∂ x i j
,

r(s, j) := number of s’s in row j of T1,

u(s, j) := number of s’s in row j of T2.

What remains then is to calculate R(φ1({t1})φ2({t2})) for all appearing over-
laps between {t1} and {t2} (to rewrite the problem in terms of coefficients in a
basis of the symmetric polynomialsR[x]G). This depends fully on the application,
i.e., how Sn acts on the ring one works with. For example, as we will later see in
Section 8.3.3, symmetrization for flag algebras will be equivalent to canonically
labeling a flag.



8
Symmetry Reduced Flag SOS Hierarchies

In this chapter we fully exploit the symmetries of the Lasserre hierarchy for flag
sums-of-squares, as introduced in Chapter 6. These are hierarchies limiting the
number of true relations (e.g., edges), and thus the degree of the corresponding
monomials, in the products. The next chapter, Chapter 9, instead considers the
symmetry of the hierarchies obtained by limiting the number of vertices of the
flags appearing in the hierarchies.

As seen in Section 6.5, we can see flags as limits of polynomials, where a
fully labeled flag M corresponds to the monomial consisting of binary variables
corresponding to E(M). As a reminder, these variables correspond to predicate
relations in flags, indexed by (potentially ordered/unordered/distinct) tuples in
[n]mi , for each mi denoting the number of arguments of a predicate Pi . We let
Sn act on the variables by acting on the indices (i.e., vertices of the flags) simul-
taneously. Recently, it was observed in [Ray+18] that one can recover flag sums-
of-squares by partially exploiting the symmetries of these polynomial hierarchies,
and taking the limit.

We first make this step "backwards" to polynomials as well, and then fully
exploit the symmetries of the polynomial hierarchies for each n. We will see here,
too, that the sizes of the hierarchies become independent of n, if n is chosen big
enough, which will allow us to take the limit of the hierarchy. Going backwards

171
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to polynomials, while first increasing the size of the hierarchies, also increases the
symmetries of the hierarchy and removes redundancies contained in the definition
of flag algebras. This way we obtain a better reduction than we would have when
starting out with flag algebras, and then reducing them further.

Outline and Contributions of this Chapter. We start by considering an easier
case in Section 8.1, where we optimize over binary variables with a single index.
Determining the decomposition into irreducible submodules is straightforward in
this case, as we can rely fully on well known facts about the representation theory
of Sn, as explained earlier in Section 7.2. In Section 8.2 we attempt to general-
ize the approach, but quickly conclude that permutation modules are not enough
to determine the full decomposition of the modules; we will need to generalize
them. We determine the reduction for the general case in Section 8.3. There we
first show that the decomposition stabilizes when n reaches a certain threshold, in
similar vein as results from [Ray+18], [Rie+13] and [DR20]. We then propose a
novel algorithm to decompose generalized permutation modules into irreducible
submodules, which computes the decomposition independently of n (and thus
also independently of the dimension of the original representation). The next
Section 8.4 focuses on the case of graphs, where we determine the full decom-
position of the Lasserre hierarchy of graphs with up to two edges. We give an
interpretation of the reduced limit-hierarchy in terms of flags with vertex groups
instead of vertex labels, which we call Specht flags. We apply the reduced hier-
archies to compute outer approximations of graph-profiles of pairs of small (har-
monic) graphs in Section 8.5, visualizing the rich structures of densities of small
subgraphs in limits of graphs. In Section 8.6 we provide a proof-of-concept exam-
ple for an extension of flag algebras to the much less well-understood setting of
degenerate extremal combinatorics, where the edge density approaches zero as
the number of vertices grows. Finally, we give a short description of the software
package developed for flag sums-of-squares in Section 8.7.

Main Symmetry Reduction Idea. To exploit the symmetry of the hierarchies,
we now want to decompose R[x] into irreducible Sn-submodules, as that gives us
a block-diagonalization of the optimization hierarchy, as explained in Chapter 7.
To do this, we try to decompose R[x] into permutation modules first, because we
know how to decompose them further into irreducible submodules.
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8.1 Warm Up: One Predicate with One Argument.

In this section we consider binary variables x i with just one index in i ∈[n], where
Sn acts by permuting variables directly. HereR[x]Sn consists of the fully symmetric
polynomials in binary variables. The corresponding hierarchy was fully reduced
before in [Rie+13] for non-binary variables. The first easy step to find the decom-
position into irreducible submodules is to determine the orbits of the monomial
basis of R[x]. In this case we get one orbit for each degree:

Sn(1) = {1},
Sn(x1) = {x1, . . . , xn},

Sn(x1 x2) = {x i x j : 1≤ i < j ≤ n},
...

which correspond directly to permutation modules:

span(Sn(1))≃ M (n),

span(Sn(x1))≃ M (n−1,1),

span(Sn(x1 x2))≃ M (n−2,2),
...

by sending the monomial x i1 · · · x id , i1 < · · · < id to the tabloid with the i j in one
row, and all indices that do not appear in the other. For example for the degree 3
orbit we have

x2 x4 x5←→ 1 3 6 7
2 4 5 ∈ M (n−3,3)

in the case n= 7.
Thus, the ring of polynomials (seen as Sn-module) decomposes as

R[x]≃
n⊕

d=0

M (n−d,d).

We described the decomposition of permutation modules Mλ into Specht modules
in Theorem 7.12, i.e., it is straightforward to get the full decomposition from here.

In this case calculating R(φ1({t1})φ2({t2})) is easy as well. Let us assume that
φ1 corresponds to the orbit of degree 2, and φ2 to the orbit of degree 3. Then,
given tabloids {t1} of shape (n−2, 2) and {t2} of shape (n−3, 3), this corresponds
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to multiplying two monomials of degree 2 and 3, cancelling potential squares, and
then determining its orbit (which is uniquely given by the degree). E.g.

R
�
φ1

�
1 4 5 6 7
2 3

�
φ2

�
1 2 4 7
3 5 6

��

=R(x2 x3 · x3 x5 x6)

=R(x2 x3 x5 x6)

=R(x1 x2 x3 x4).

Here R(x1 x2 x3 x4) is exactly the polynomial known as the (normalized) el-
ementary symmetric polynomial e4 :=

∑
1≤i< j<k<l≤n x i x j xk x l (see, for example,

[Mac95]).

8.2 The (Hyper-) Graph Case

The case of (hyper)-graphs was only partially reduced before in [Ray+18]. While
they did find a reduction of which the size is independent of n for n big enough,
the reduction they found is generally far from optimal.

Here we consider binary variables x i j which are indexed by unordered pairs
i, j (resp. triples, quadruples, . . . ), which correspond to (hyper-)edges. We follow
the same idea in the general case: First, we split all of R[x] into parts resembling
permutation modules, then we decompose these further. While this was straight-
forward in Section 8.1, in the general case working with just permutation modules
is not enough anymore.

Again, we first want to split R[x] into the spans of orbits of monomials. As
we are working with binary variables, and the order of the indices does not mat-
ter, monomials correspond exactly to labeled (hyper-)graphs. For example, in the
case of graphs, the monomial x12 x13 x14 x34 corresponds to the graph with edges
(1,2), (1,3), (1,4) and (3,4). Now the action of Sn on the monomial is the same
as Sn acting on the vertices of the graph. Orbits thus correspond to (hyper-)graphs
up to isomorphism (without isolated nodes).

Given a (hyper-)graph G = (V, E) we introduce the notation

M G,n := span

 
Sn

 ∏
(i1,...,ik)∈E

x i1...ik

!!
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for the Sn-module spanned by the orbit of monomials corresponding to G. We call
this module the graph module of G (and more generally, the flag module of a model
M). This gives us the first decomposition of the full module of polynomials. For
example, we have

R[x] =
⊕

graphs G up to isomorphism without isolated vertices

M G,n

= M∅,n ⊕M ,n ⊕M ,n ⊕M ,n ⊕M ,n ⊕ . . .

in the case of graphs. We do not need to consider modules corresponding to
graphs with isolated vertices, as variables correspond to edges, and thus mono-
mials correspond to graphs without isolated vertices.

Note that we could generalize this for non-binary variables by allowing graphs
with multi-edges. This generalizes in the obvious way to arbitrary flags, if we take
the sum over all flags up to isomorphism.

First, let us take a look at two simple cases of these modules.

The Graph Module M ,n

Decomposing this module is straightforward: We can find a bijection between the
basis and tabloids of shape (n− 3,2, 1) by

i

j k
←→ x i j x ik←→

[n] \ {i, j, k}
j k
i

,

which immediately tells us that M ,n ≃ M (n−3,2,1). This works here since the
row-stabilizer of the tabloid is exactly the automorphism group of the graph. We
can then further decompose it using the known decomposition into Specht mod-
ules.

The Graph Module M ,n

Decomposing this module is more tricky. Here we can find a description of mono-
mials using tabloids, too, but it is not bijective:

ji

k l
←→ x i j xkl ←→

(
[n] \ {i, j, k, l}

i j
k l

,
[n] \ {i, j, k, l}

k l
i j

)
.
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I.e., switching the second and third row of a tabloid results in the same monomial.
Thus

M ,n ≃ M (n−4,2,2)/S2 ⊆ M (n−4,2,2), (8.1)

where S2 is the group permuting the last two rows of M (n−4,2,2).
Schur’s lemma tells us that the function from M (n−4,2,2) to M (n−4,2,2)/S2 which

symmetrizes elements over the row permutation group S2, respects the decompo-
sition of the permutation module, in the sense that it sends Specht modules in
M (n−4,2,2) to equivalent Specht modules in M (n−4,2,2)/S2, or to {0}. I.e., the decompo-
sition of M (n−4,2,2)/S2 is included in the one of M (n−4,2,2), but certain Specht modules
may fall together, or may be cancelled out.

In the case n= 8 we can calculate the multiplicities of the Specht modules in
both from their characters:

M (4,2,2) ≃S(4,2,2) ⊕ S(4,3,1) ⊕ S(4,4) ⊕ 2S(5,2,1) ⊕ 2S(5,3)

⊕ S(6,1,1) ⊕ 3S(6,2) ⊕ 2S(7,1) ⊕ S(8),

but

M ,n ≃S(4,2,2) ⊕ (1− 1)S(4,3,1) ⊕ S(4,4) ⊕ (2− 1)S(5,2,1) ⊕ (2− 1)S(5,3)

⊕ (1− 1)S(6,1,1) ⊕ (3− 1)S(6,2) ⊕ (2− 1)S(7,1) ⊕ S(8)

=S(4,2,2) ⊕ S(4,4) ⊕ S(5,2,1) ⊕ S(5,3)

⊕ 2S(6,2) ⊕ S(7,1) ⊕ S(8).

While the full permutation module decomposes into 14 Specht modules, the
quotient decomposes into 8. We now have to figure out how to determine the way
the Specht modules are contained in M ,n, i.e. we need to determine an explicit
basis of the Sn-homomorphisms in Hom

�
Sλ, M ,n

�
for each Sλ appearing in the

decomposition.

8.3 The General Case: Decomposing the Module M F,n

Let F be a flag of a given theory on m vertices. If we can determine the Reynolds
operator of the automorphism group Aut(F) acting on Hom(Sµ, Mλ), we can then
choose homomorphisms which span the image of the operator.
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We can always describe the module M F,n as the quotient of a hook-permutation
module and the automorphism group of F

M F,n ≃ M (n−m,1,...,1)/Aut(F), (8.2)

where the part 1 is repeated m times, one time for each vertex of F , and Aut(F)
acts on the module by permuting rows starting from the second.

We can immediately simplify this by combining freely interchangeable nodes
of F into the same rows, as we have done for the two examples above.

Definition 8.1. Let F be a flag. Then the shape of F is the partition of the vertex
set V of F , where two vertices i, j are in the same part if and only if swapping them
results in the same flag, i.e., the permutation (i, j) is an automorphism of F . Since
we can chain these automorphisms, this property of pairs of vertices defines an
equivalence relation between vertices, and thus results in a well-defined partition
of V . We assume that its parts are ordered from biggest to smallest (potentially
non-unique). We may use them as partitions of [m] = [|V |] by replacing the parts
with their cardinalities.

Example 8.2.

shape

�
1

2 3

�
= ({2, 3}, {1}),

shape

�
12

3 4

�
= ({1,2}, {3,4}).

Remark 8.3. We can calculate shape(F) of a flag in polynomial time (in m =
|V (F)|), by checking which of the

�m
2

�
pairwise permutations between pairs of

vertices leave F unchanged.

We use the notation (c, v...), where c is a scalar and v a vector, to denote the
vector (c, v1, v2, . . . ).

Theorem 8.4. Let F be a flag, shape(F) its shape and m the number of its vertices.
Then

M F,n ≃ M (n−m,shape(F)... )/G,

where G is the group of automorphisms of F acting on the vertices in the parts of
shape(F). Thus, G acts on the rows of the tabloids of shape (n−m, shape(F) . . . ).
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Proof. We know by (8.2) that

M F,n ≃ M (n−m,1,...,1)/Aut(F).

Splitting the quotient into two, we see

M (n−m,1,...,1)/Aut(F)≃ (M (n−m,1,...,1)/Aut(shape(F)))/G,

where
Aut(shape(F)) =

⊕
c∈shape(F)

Sc

consists of the permutations in Sn which do not change shape(F). Since the parts
of the partition shape(F) are pairwise disjoint, Aut(shape(F)) is a Young-group,
and thus

M (n−m,1,...,1)/Aut(shape(F))≃ M (n−m,shape(F)... ).

8.3.1 The Decomposition of M F,n Stabilizes for n Big Enough

While the modules M F,n1 and M F,n2 are non-isomorphic if n1 ̸= n2, the decompo-
sition into Specht modules does not change anymore once n is big enough. This
was first noted in [Ray+18] to stabilize for k-uniform hypergraphs at n = 2kd,
where d is the degree/level of the hierarchy (which corresponds to the maximum
number of considered edges of the hyper-graphs F). Similar properties have also
been investigated for variables with a single index and Sn symmetry in [Rie+13],
and, more recently, for symmetries coming from more general reflection groups
in [DR20]. We see the same stabilization property here, and can refine the result
further.

Proposition 8.5. Let m < n1 ≤ n2, and fix partitions λ ⊢ m and (n1 −m,λ . . . ) Ã
µ1 ⊢ n1, as well as (n2−m,λ . . . )Ã µ2 ⊢ n2, where µ1 and µ2 are identical partitions
up to the first, and biggest, parts (µ1)1 and (µ2)1.

If n1 ≥ 2m, then

Hom(Sµ1 , M (n1−m,λ... ))≃ Hom(Sµ2 , M (n2−m,λ... )).

We get a vector space isomorphism by sending the homomorphism ϑT1
, where T1

is a semistandard-tableau, to ϑT2
, where T2 is the semistandard tableau we get by

extending its first row by inserting n2 − n1 ones at the start of it.
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Proof. Let T1 be a semistandard tableau of shape µ1 and content (n1 −m,λ . . . ).
Since T1 is semistandard, it needs to have n1−m≥ 2m−m= m ones in first row.
Since µ1 is a partition of m, the number of ones in the first row of T1 is at least as
big as the length of its second row. Hence, inserting additional ones at the start
of the first row results in another semistandard tableau T2.

Analogously, the number of ones in the first row of a semistandard tableau of
shape µ2 and content (n2 − m,λ . . . ) exceeds the length of its second row by at
least n2 − n1, i.e., removing one’s results in another semistandard tableau.

Since both insertion and removal are clearly injective, and the semistandard
tableaux form a basis of the multiplicity spaces, they are isomorphic.

Corollary 8.6. Let G = (V, E) be a (hyper-)graph. Then the module M G,n decom-
poses as M G,2|V | if n≥ 2|V | in the sense that if for some set of partitions I

M G,2|V | ≃
⊕
µ∈I

cµS
(2|V |−|µ|,µ... ),

then
M G,n ≃

⊕
µ∈I

cµS
(n−|µ|,µ... ).

The explicit homomorphisms are given by the tableaux one gets by extending the first
rows of the semistandard tableaux defining the ones for M G,2|V | with ones.

In particular, we see that the decomposition of the module of polynomials
R[x]≤d up to degree d does not change for n ≥ 2kd. This implies that the size
of the corresponding SDPs does not change anymore at that point, and we will
see that, after some rescaling, even all coefficients of the constraints of the SDPs
converge. This then allows us to consider the case where n→∞, and will result
in a hierarchy equivalent to the (Lasserre) flag SOS hierarchy, while being more
efficient to compute. Interestingly, the limit is not unique: One can determine ad-
ditional, new limit hierarchies, which can then handle degenerate problems where
the usual flag methods fail, since there all subgraph densities approach zero as n
increases.

8.3.2 Decomposing the Modules M F,n Explicitly

We have seen that the modules M F,n are isomorphic to quotients of the form Mλ/G,
where G is a group acting on the rows (starting from the second) of the tabloids,
and that the decomposition does not change anymore once n is big enough. But
we still have to determine how the module actually decomposes.
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To do this, we need to determine a basis of the multiplicity space

Hom(Sµ, Mλ/G) =RG(Hom(Sµ, Mλ)),

where RG is the Reynolds operator of the action of G on the multiplicity space of
Sµ in the full permutation module Mλ, extended in the obvious way from the ac-
tion of G on Mλ. As we have seen earlier in Section 7.2.3, a basis of Hom(Sµ, Mλ)
is given by the semistandard tableaux of shape µ and content λ. One could now
either calculate RG explicitly in this basis, and chose a set of columns generating
the column space of the operator, or determine the intersection of the spaces of
homomorphisms invariant under the actions of the elements of a generator of G.

The problem here is that the action of G is not very straightforward. That
is, there is no known efficient algorithm to express a homomorphism given by a
tableau that is not coming from a semistandard tableaux as linear combination
of homomorphisms each given by a semistandard tableau. While there is such a
"straightening algorithm" (involving Garnir elements) for polytabloids to express
them as linear combination of polytabloids coming from standard tableaux (see,
for example, [Sag13, Section 2.6]), the usual way to prove that the semistandard
tableaux form a basis of the multiplicity space is based on an existence argument
(Lemma 8.7).

Of course, one could calculate the basis explicitly, but due to the exponential
number of terms in polytabloids one should avoid it. Instead, one can work on the
level of semistandard tableaux and tabloids, if one generalizes tabloids further to
allow for partial rows.

First, we can take a look at the image of a polytabloid et (an element of the
basis of Sµ) under a homomorphism ϑT ∈ Hom(Sµ, Mλ/G), given by a standard
tableau t and a generalized tableau T respectively.

ϑT (et) = ϑT

 ∑
σ∈Ct

sgn(σ){σt}
!

=
∑
σ∈Ct

sgn(σ)
∑

T ′∈{T}
(σt)[T ′]

=
∑
σ∈Ct

sgn(σ)
∑

T ′∈{T}
{tableau with entry (σt)(i, j) in row T ′(i, j)}

=
∑
σ∈Ct

sgn(σ)
∑

T ′∈{T}
{tableau with entry t(σ−1(i), j) in row T ′(i, j)}
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=
∑
σ∈Ct

sgn(σ)
∑

T ′∈{T}
{tableau with entry t(i, j) in row T ′(σ(i), j)}

=
∑
σ∈Ct

sgn(σ)
∑

T ′∈{T}
{tableau with entry t(i, j) in row σ−1(T ′(i, j)}

=
∑
σ∈Ct

sgn(σ)
∑

T ′∈{T}
t[σ−1T ′].

That is, we can decompose ϑT (et), earlier introduced in Section 7.2.3, as a
sum over terms of the form ci t[Ti], ci ∈ Z, where the Ti are generalized tableaux
obtained by first permuting within rows and then within columns of T .

Lemma 8.7 (Lemma 2.10.7 in [Sag13]). Let T be a (not necessarily semistandard)
generalized tableau of shape µ, and we assume that the homomorphism decomposes
in the form

ϑT (et) =
∑

i

ci t[Ti], (8.3)

where ci ∈ Z and Ti are generalized tableaux.
Then either ϑT (v) = 0 for all v ∈ Sµ, or there exists an i such that Ti is semis-

tandard.

This leads to the constructive argument that one can repeatedly subtract ciϑTi

from ϑT , where Ti is semistandard, to eventually end up with the full decompo-
sition in the basis. How to do this explicitly on the other hand is left open in the
literature. Again, the problem is that the number of terms ci t[Ti] grows exponen-
tially in both the row and columns size of the tableaux.

So, we are going to need two things: A way to identify semistandard tableaux
appearing in the sum efficiently, and a way to work with the difference ϑT (et)−
ϑTi
(et).
The usual way to prove the existence of a semistandard tableau in the de-

composition (8.3) is to start with an arbitrary term in the sum, and then apply
Garnir-elements to it to move step by step towards a term with a semistandard
tableau.

Now, while this is enough to get a constructive proof, in practice this result
does not seem too useful, if one works with bigger tableaux. The main prob-
lem is this: Having identified a semistandard tableau Ti in the decomposition
(8.3) this way, one then wants to repeat the same process with the difference
ϑT (et) − ϑTi

(et). It does not seem clear (assuming one does not work with the
decomposition explicitly) how to determine a term in the difference, as there are
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potentially many ways to arrive at the same term from T (resp. Ti), and terms
may cancel out. Especially, it seems hard to decide when one is "done", i.e., one
has found the full decomposition and the remaining difference is zero.

Instead, we are going to first determine all semistandard terms appear-
ing in the decomposition of ϑT (et), and then describe the difference ϑT (et) −∑

Ti semistandard ϑTi
(et) with as few "partial" homomorphisms as possible. For a set

of generalized tableaux S we call

ϑS(t) :=
∑
T ′∈S

t[T ′]

a partial homomorphism if S is a subset of a generalized tabloid {T}, here usually
obtained by fixing certain entries to specific positions in a row of T . We have

ϑT =
∑

T ′∈{T}
ϑ{T ′},

where the {T ′}’s are sets with one element (instead of the tabloids) and

ϑS1⊔S2
= ϑS1

+ ϑS2
.

Let us start with an example. Note that to permute rows in the image of
ϑT , we apply the permutation to each entry of T simultaneously. Consider the
homomorphism given by the permuted semistandard tableau

T = (12) 1 1 2 3
2 3 = 2 2 1 3

1 3 = 1 2 2 3
1 3 ,

which is obviously not semistandard. We now want to find all semistandard
tableaux we can obtain by first permuting within rows, and then within columns
of T . To do this, we first consider the partial homomorphisms where the position
of the ones in T are fixed (written in bold font) in different ways:

= 1 2 2 3
1 3 ∪ 1 2 2 3

3 1 ∪ 2 1 2 3
1 3 ∪ 2 1 2 2

3 1

∪ 2 2 1 3
1 3 ∪ 2 2 1 3

3 1 ∪ 2 2 3 1
1 3 ∪ 2 2 3 1

3 1 .

Now we can make use of the observation that given a semistandard tableau, the
tableau obtained by restricting to the boxes with entries at most some i is again
semistandard. Since there is only one semistandard tableau with just two ones
(namely 1 1 ), we do know that after sorting the columns every semistandard
tableau must have two ones in the first row at the start. Thus, only the partial
homomorphisms given by

1 2 2 3
3 1 and 2 1 2 3

1 3



Chapter 8. Symmetry Reduced Flag SOS Hierarchies 183

may contain semistandard tableaux. Next, we can repeat the same for the two’s
in both tableaux. Eliminating the sets which may not contain a semistandard
tableaux (by sorting columns and checking if the tableaux restricted to the en-
tries one and two are semistandard), we obtain the three sets (and corresponding
partial homomorphisms)

1 3 2 2
3 1 , 2 1 2 3

1 3 and 3 1 2 2
1 3

This tells us that the decomposition of ϑT contains exactly the three column sorted
semistandard tableaux

1 1 2 2
3 3 , 1 1 2 3

2 3 and 1 1 2 2
3 3 ,

all appearing with sign −1, as we need to permute one pair of entries within one
column of each to sort them.

Now we subtract the three corresponding homomorphisms, and take a look at
the difference

ϑT −

−2ϑ 1 1 2 2

3 3

− ϑ 1 1 2 3
2 3


 .

Lemma 8.7 tells us that this difference is zero if and only if its decomposition (8.3)
does not contain a semistandard tableau. Since we eliminate all semistandard
tableaux appearing in the decomposition given by ϑT , remaining semistandard
tableaux can only appear in the terms we subtract. While for any given semistan-
dard tableau T ′ the decomposition of ϑT ′(et) contains a term corresponding to
the semistandard T ′ itself, it may not be the only one. In this case both tableaux
are the unique semistandard tableaux appearing in both their corresponding de-
compositions, i.e., we have

ϑ 1 2 2 3
1 3

= −2ϑ 1 1 2 2
3 3

− ϑ 1 1 2 3
2 3

.

(12) 1 1 2 3
2 3 = 1 2 2 3

1 3 = −2 1 1 2 2
3 3 − 1 1 2 3

2 3

Generally there may be more semistandard tableaux appearing in the de-
composition, for example the homomorphism corresponding to the semistandard
tableau

1 4
2 5
3
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contains terms corresponding to both this tableau itself, and to the semistandard
tableau

1 2
3 4
5

,

which is obtained by first permuting the second row, and then sorting columns.
Thus, we generally have to recursively repeat the procedure of determining all
semistandard tableaux appearing in the decompositions of the subtracted terms,
excluding their main terms. This algorithm has to finish in a finite number of steps
due to the dominance lemma for generalized tableaux (see e.g., Lemma 2.10.2 in
[Sag13]), which tells us that all other semistandard tableaux appearing in the de-
composition have to be smaller than the main one (according to the column dom-
inance ordering of generalized tableaux). As there is a finite number of tableaux
of a given size, this algorithm has to finish in a finite number of steps.

Thus, we obtain Algorithm 5 to write a homomorphism given by a tableau T ,
which is not semistandard, in the semistandard basis.

Algorithm 5: Decompose a generalized tableau T in terms of semistan-
dard tableaux
// Determine all appearing semistandard tableaux:
PartialHomomorphisms← {ϑT };
for i = 1, . . . , m do

Split all ϑS ∈ PartialHomomorphisms further by fixing all i-entries in
all possible ways;

Delete all partial homomorphisms which are not semistandard after
sorting their columns and restricting to entries 1, . . . , i;

// Determine their multiplicities:
cT ′ ← 0 for all semistandard tableaux T ′;
for ϑS ∈ PartialHomomorphisms do

p← the permutation sorting the columns of S;
T ′← column-sorted S;
cT ′ = cT ′ + sign(p);

if not the highest level of the recursion then
cT = 0;

return
∑

T ′ cT ′(ϑT ′ −Decompose(T ′))
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Determining the Reynolds Operators. To determine the symmetry adapted ba-
sis of Mλ/G, we need to determine a basis of the multiplicity space of Sµ in Mλ/G for
each µ. As mentioned above, we let RG be the Reynolds operator of G and see
that

Hom(Sµ, Mλ/G) =RG(Hom(Sµ, Mλ)).

If we can now determine a matrix representation of RG explicitly in the semis-
tandard basis of Hom(Sµ, Mλ), we can simply choose a subset of columns which
span the image of RG to obtain a basis of Hom(Sµ, Mλ/G).

We can now use this Algorithm 5 to determine the matrix representation
MRG

∈ 1
|G|Z

dim(Hom(Sµ,Mλ))×dim(Hom(Sµ,Mλ)) of the Reynolds operator RG in the basis
of homomorphisms given by semistandard tableaux. We do this by first decompos-
ing σ(ϑT ) for each semistandard T and element σ of a generator of F . Knowing
the matrices corresponding to a generator, we can then generate the full matrices
corresponding to the full group, and average them.

In some cases we may see that σ(ϑT ) = ±σ(ϑT ′) for another semistandard
tableau T ′. In these cases we know that RF (ϑT ) =RF (ϑT ′), allowing us to elim-
inate one of the basis elements immediately. Generally this is not enough, but
in some cases these eliminations alone already result in a basis, if it matches the
dimension of Hom(Sµ, Mλ/F), in the case this dimension was known beforehand.
This idea is used to determine a basis of Hom(S(n−2,1,1), M1,...,1/Z/nZ) for an applica-
tion to crossing numbers in [BP22].

Remark 8.8. We can determine MRG
more efficiently by first determining a

Stabilizer-Chain of G via the Schreier-Sims algorithm, and then iterating over
a transversal of each stabilizer in the chain. We refer the interested reader to
[Ser03; Sim70; Knu91] for details.

8.3.3 Multiplying and Symmetrizing the Elements of the Symmetry
Adapted Basis

We can now apply the algorithm described in Section 7.2.4 to compute the sym-
metrized products of the symmetry adapted basis we obtained from computing
the Reynolds operators. The algorithm returns a linear combination in terms of
overlaps between two tabloids, which was defined as

overlap({t1}, {t2}) := (|row({t1}, i)∩ row({t2}, j)|)mi, j=1 .

Let us consider two graphs G1 and G2, such that the corresponding modules
are isomorphic to the quotients M G1,n ≃ Mλ1

/F1 and M G2,n ≃ Mλ2

/F2. Especially we
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know how to translate tabloids {t1} and {t2} of shapes λ1 and λ2 respectively to
specific full labelings of G1 and G2.

Given an overlap matrix O ∈ Nm×m, where m is the maximum number of
rows of λ1 and λ2, we can now build a representative of the equivalence class
corresponding to the overlap. To do this, we simply take any fixed labeling of
G1, and then label G2 greedily corresponding to the overlap O. We can then glue
together the two fully labeled graphs obtained this way, and label them canonically
to obtain the corresponding basis element of R[x]Sn . This is exactly the action of
the unlabeling operator ⟦·⟧ as introduced in Chapter 6.1.

While the problem of canonically labeling a graph is at least as hard as the
graph isomorphism problem, in practice there exist algorithms, such as NAUTY
and TRACES [MP14], that perform well, especially for the (very) small graphs
appearing in the levels of the hierarchies considered in this work. The algorithms
in [MP14] can easily be generalized to general flags, and a general version relying
just on a function that can distinguish vertices from another has been implemented
as part of the Julia package "FlagSOS.jl", described in Section 8.7.

8.4 Example and Interpretation: The Reduced Second
Level of the Lasserre Hierarchy for Graphs

Let us take a look at a specific small example: The Lasserre hierarchy indexed by
monomials up to degree two, i.e., graphs with at most two edges. We assume here
that n ≥ 8 so that the decomposition stabilizes by Corollary 8.6. The case n < 8
can be decomposed analogously, but some semistandard tableaux may not exist,
or look a bit different as columns may need to be sorted, thus requiring separate
cases for each small n.

Here the Sn module R[x]≤2 decomposes directly into the four graph modules

R[x]≤2 = M∅,n ⊕M ,n ⊕M ,n ⊕M ,n,

of which the first three are isomorphic to permutation modules:

M∅,n ≃ M (n),

M ,n ≃ M (n−2,2),

M ,n ≃ M (n−3,2,1).
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We can then use the known decomposition of each permutation module, which
was described in detail in Section 7.2, to determine a symmetry adapted basis of
each of the three graph modules.

We saw earlier in (8.1) that the fourth module, which corresponds to the graph
with two disjoint edges, is isomorphic to the quotient

M ,n ≃ M (n−4,2,2)/S2,

where S2 permutes the last two rows of the tabloids in M (n−4,2,2). Next, we can use
Algorithm 5 to compute the Reynolds operators for each of the multiplicity spaces
Hom(Sµ, M (n−4,2,2)) for the nine partitions µ⊵ (n−4,2, 2) dominating (n−4,2, 2).
We give all nine Reynolds operators in Table 8.1, where the semistandard basis is
ordered by sorting their column-wise vectorization lexicographically.

µ RS2
Chosen basis

(4, 2,2)
�
1
� 1 1 ··· 1

2 2
3 3

(4, 3,1)
�
0
�

(4, 4)
�
1
� 1 1 1 1 ··· 1

2 2 3 3

(5, 2,1) 1
2

�
1 −1
−1 1

�
1 1 ··· 1 3
2 2
3

(5, 3) 1
2

�
1 1
1 1

�
1 1 1 ··· 1 3
2 2 3

(6, 1,1)
�
0
�

(6, 2) 1
2




1 0 1
0 2 0
1 0 1


 1 1 ··· 1 3 3

2 2 , 1 1 ··· 1 2 3
2 3

(7, 1) 1
2

�
1 1
1 1

�
1 ··· 1 2 3 3
2

(8)
�
1
�

1 ··· 1 2 2 3 3

Table 8.1: Reynolds operators of S2 on Hom(Sµ, M (n−4,2,2))

As we can see in Table 8.1, the graph module M ,n decomposes into 8 Specht
modules, while the full permutation module M (4,2,2) decomposes into 14. To-
gether with the decompositions of the first three modules, we obtain the full de-
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composition

R[x]≤2 =M∅,n ⊕M ,n ⊕M ,n ⊕M ,n

≃S(n−4,2,2) ⊕ S(n−4,4) ⊕ 2S(n−3,2,1) ⊕ 2S(n−3,3)

⊕ S(n−2,1,1) ⊕ 5S(n−2,2) ⊕ 4S(n−1,1) ⊕ 4S(n).

The multiplicities give us the block-sizes of the block-diagonalized SDP: one block
of size 5, two each of sizes 4 and 2, and three blocks of size 1.

We can now compute the (polynomial) entries of the block-diagonalized SDP.
Take, for example, the semistandard tableau

T1 =
1 1 · · · 1 2
2 3

for the graph , and the semistandard tableau

T2 =
1 1 · · · 1 3 3
2 2

of the same shape for the graph . To compute the corresponding elements of
the symmetry adapted basis, we first need to understand the two homomorphisms
ϑTi

: M (n−2,2)→ R[x]≤2 for i = 1, 2.

Graphs with Grouped Vertices. In Section 7.2 we defined the homomorphisms
corresponding to semistandard tableaux T to be given by

ϑT ({t}) =
∑

T ′∈{T}
t[T ′],

i.e., we here send a tabloid {t} of shape (n−2, 2) to a sum over the elements T ′ of
the row equivalence class of the semistandard tableau T , where t[T ′] is the tabloid
of shape (n− 3, 2,1) respectively (n− 4, 2,2) obtained by moving the entries of t
to the rows determined by the entries of T ′. Hence, the images of the tabloid

{t}= [n] \ {i, j}
i j

are

ϑT1
({t}) =

∑
k∈[n]\{i, j}

 
[n] \ {i, j, k}
i k
j

+
[n] \ {i, j, k}
j k
i

!
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and

ϑT2
({t}) =

∑
k<ℓ∈[n]\{i, j}

[n] \ {i, j, k,ℓ}
i j
k ℓ

.

We can now apply the homomorphisms relating the permutation and graph mod-
ules to first obtain linear combinations of monomials and then graphs:

ϑT1
({t}) =

∑
k∈[n]\{i, j}

�
x i j x jk + x i j x ik

�

=
∑

k∈[n]\{i, j}

�
i

j k
+

i

j k

�

= (n− 2)

�
i

j
+

i

j

�

= (n− 2)
i

j

∈ M ,n, and

ϑT2
({t}) =

∑
k<ℓ∈[n]\{i, j}

x i j xkℓ

=
∑

k<ℓ∈[n]\{i, j}

ji

k ℓ

=
�

n− 2
2

�
ji ∈ M ,n.

Here we first use the notation where we group together vertices to indicate
that we sum over all the possible graphs we can obtain by permuting vertex labels
within the group. The edge connecting i resp., j to the unlabeled vertex (formerly
vertex k) can be connected to either of the two vertices i or j. We can interpret the
unlabeled (filled in) vertices to be part of a group together with all vertices that
do not appear explicitly in the graph. No vertex group is necessary for ϑT2

({t})
since the graph already has the symmetries (which we can see in T2 itself: the
second row only contains twos).
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This notation can be generalized to more complicated homomorphisms in a
straightforward manner. Consider, for example, the graph

G =
a

b
c d

e

of shape shape(G) = ({a, c}, {b}, {d}, {e}). Since the automorphism group of G
is exactly the corresponding Young-group S{1,3} × S{2} × S{4} × S{5}, we know
that M G,n ≃ M (n−5,2,1,1,1) for n big enough. We now obtain an element of
Hom(S(n−4,2,2), M G,n) by the semistandard tableau

T =
1 1 · · · 1 2
2 3
4 5

.

Here we need three groups: One group for unlabeled vertices, containing one of
the two vertices in the first part {a, c} of shape(G), and two more groups of size
two each:

ϑT

 
[n] \ {i, j, k,ℓ}

i j
k l

!
= (n− 4)

∑
σ∈S{i, j}×S{k,ℓ}

σ

�
i

j k

ℓ

�

=
i

j

k

ℓ

∈ M G,n.

Specht Flags. But what we are actually interested are the elements of the sym-
metry adapted basis, i.e., the images of polytabloids under ϑT . Specifically, we fix
one polytabloid et ∈ Sµ for each shape µ, since we only need the image of one and
the same polytabloid under all homomorphisms in Hom(Sµ,R[x]≤d). Continuing
the example from above, let us fix the standard tableaux

t = 1 3 5 · · · n
2 4

of shape (n − 2, 2) obtained by filling it column-wise. The corresponding poly-
tabloid is

et =
1 3 5 · · · n
2 4 − 2 3 5 · · · n

1 4 − 1 4 5 · · · n
2 3 + 2 4 5 · · · n

1 3 ∈ M (n−2,2).
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We now obtain two elements of the symmetry adapted basis of R[x]≤2 by

ϑT1
(et) = (n− 2)


 2

4

− 1

4

− 2

3

+
1

3


 ∈ M ,n

ϑT2
(et) =

�
n− 2

2

��
42 − 41 − 32

+
31
�
∈ M ,n.

As these quantum flags/polynomials generalize (higher) Specht polynomials,
which were first introduced in [ATY97] (see also [MRV21] for more recent results
related to them), we call these quantum graphs (higher) Specht graphs, or more
generally Specht flags.

Calculating the Entries of the Block-Diagonalized SDP. To obtain the block-
diagonalization, we now need to compute the symmetrized products of the ele-
ments of the symmetry adapted basis. The symmetrized product of the two Specht
graphs ϑT1

(et) and ϑT2
(et) is

1

(n− 2)
�n−2

2

�⟦ϑT1
(et)ϑT2

(et)⟧

=

�
 2

4

− 1

4

− 2

3

+
1

3




·
�

42 − 41 − 32
+

31
��

=4

°
² 2

4

· 42

±
³− 8

°
² 2

4

· 41

±
³

+ 4

°
² 2

4

· 31

±
³ , (8.4)

where we used the fact that we symmetrize the products in the last step. Here we
only need to know how the labels overlap relative to each other between the two
quantum graphs of each of the three pairs. The algorithm explained in Section
8.3.3 does exactly return a decomposition corresponding to this step, split a bit
further by the way the unlabeled vertices can overlap with the other graph.
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If n is finite we now still need to consider the fact that unlabeled vertices of
a flag average over all labels that do not appear in the graph, which potentially
includes vertices of the flag we glue the flag to. For example,

1

2
·

1

3
=

�
1

n− 2

∑
i>2

1

2 i

�
·

1

3

=
n− 3
n− 2

∑
i>3

12

3
+

1
n− 2

1

2 3
,

which results in a significant number of additional terms in ⟦ϑT1
(et)ϑT2

(et)⟧.
While we can calculate the exact coefficients as rational polynomials in n us-

ing the algorithm explained in Section 8.3.3, by working with monomials with
exponents that are polynomials in n, we are mostly interested in the case where n
approaches infinity. We can modify the algorithm to instead return the decompo-
sition at step (8.4), and continue to compute the limit case from there.

The Limit Case. To make the coefficients in ⟦ϑT1
(et)ϑT2

(et)⟧ converge as n ap-
proaches infinity, we rescale the basis: We simply divide each element ϑT (et) of
the symmetry adapted basis by nm, where m is the number of vertices appearing
in the first row of T (i.e., unlabeled vertices). This then turns ϑT (et) into a finite
linear combination of flags, a quantum flag, in the limit, which we can continue
to work with to compute:

lim
n→∞

1
n3
⟦ϑT1

(et)ϑT2
(et)⟧

=4

°
² 2

4

· 42

±
³− 8

°
² 2

4

· 41

±
³

+ 4

°
² 2

4

· 31

±
³

=4

�
2

4
+

2
4

�
− 8

�
2

4
1

+
24

1

�

+ 4

°
² 2

4
1 3

+
2

4

1 3

±
³
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=8 − 8 − 8 + 8 .

We can compute the other coefficients analogously to obtain the full reduced sec-
ond level of the hierarchy, both for fixed n and the limit case.

A Product for Graphs with Grouped Vertices. Since we are only interested in
unlabeled products of elements of the form ϑT (et) for a fixed polytabloid et , we
can get rid of the labels fully, and simply write

:= lim
n→∞

1
n
ϑT1
(et)

for the limit Specht flags contained in the symmetry adapted basis. In general, it
is enough to give a graph G together with a partition V (G) = V0⊔V1⊔V2⊔· · ·⊔Vk

of its vertices to fully determine the products ⟦ϑT1
(et)ϑT2

(et)⟧. The first vertex
group V0 is the special group of unlabeled vertices, i.e., it can be seen as the
group containing V0 ∪ [n] \ V (G), and can potentially be empty. We assume that
the remaining groups are ordered by size, i.e., |V1| ≥ |V2| ≥ · · · ≥ |Vk|.
Definition 8.9. Let G1 = (G1, (V 1

i )i=0,...,m1
) and G2 = (G2, (V 2

i )i=0,...,m2
) be two

graphs (Flags) with grouped vertices. Let

λi = (n− |V (Gi)|+ |V i
0 |, |V i

1 |, |V i
2 |, . . . , |V i

k |)

be the partitions giving the group sizes of the two graphs, where n is a variable
considered to be big enough according to Proposition 8.5.

Then
G1 ·G2 := 0,

if λ1 ̸= λ2, and

G1 ·G2 := lim
n→∞

1

n|V
1

0 |+|V 2
0 |
⟦ϑT1

(et)ϑT2
(et)⟧, (8.5)

for a fixed tableau t of shape λ= λi . Here

ϑTi
: Sλ→ M Gi ,n

are two homomorphisms embedding Sλ into the flag algebra, and the Ti are the
generalized tableaux obtained by filling row j of Ti with |Vj ∩ shape(Gi)ℓ| times
entry ℓ.
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If we loose the specific order of the Vi ’s, other than V0, we can still recover
the product up to sign, because ϑT = ϑT ′ if the tableaux are row-equivalent. And
by definition of polytabloids, et = et ′ if we can obtain t ′ from t by swapping two
rows of the same even length, and et = −et ′ if we can obtain t ′ from t by swapping
two rows of same odd length.

We can also visualize the product without using labels, by drawing the groups
on top of each other, and using, for example, two different colors for the sym-
metrization groups, which are symmetrized independently of each other:







2

= 4

°
² 2

4

· 2

4

±
³− 8

°
² 2

4

1

4

±
³

+ 4

°
² 2

4

1

3

±
³

= 4 − 8 + 4

= 8 + 8 − 8 − 16 − 8 + 16 .

The Symmetry Adapted Basis. This means that we can give a symmetry adapted
basis ofR[x]≤d , uniquely up to sign, simply by giving a list of graphs with grouped
vertices. We give the full basis for the case d = 2 in Table 8.2. While we computed
the symmetry adapted basis for bigger d ’s, we only give the block sizes for d up to 5
in Table 8.3 due to the amount of data. Of course, one can also consider different
hierarchies, such as one generated by graphs with few vertices if a problem is
formulated in small dense graphs, or a hierarchy generated by bipartite graphs
alone (for example for a problem such as Sidorenko’s conjecture, see Section 6.6).
The block-sizes for these two hierarchies, reduced in the same way, are given in
Tables 8.4 and 8.5. The block sizes are given in the format sizemultiplicity. All
the hierarchies still grow very quickly despite symmetry reduction. In practice
some clever guessing of orbits of graphs, blocks, or even elements of the symmetry
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adapted basis can help for some problems to obtain better bounds than one can
reach with the last fully computable level of the hierarchy.

Symmetry adapted basis

Block M∅ M M M

(n− 4,2, 2)
(n− 4,4)

(n− 3,2, 1) ,

(n− 3,3) ,

(n− 2,1, 1)

(n− 2,2) , , , ,

(n− 1,1) , , ,

(n) ∅, , ,

Table 8.2: The symmetry adapted basis of the flag algebra of graphs up to two
edges. The vertices have been arranged in order of vertex groups V0, . . . , Vk from
top to bottom.

8.5 Applications: Graph Profiles

Let G and H be two (or more) graphs. The graph profile of G and H is the set of
pairs of densities that can be attained simultaneously from the same sequence of
graphs:

profile(G, H) := {(p(G, G), p(G, H)) : G sequence of graphs}.

There is very little known about graph profiles to this date. They were first
studied in [ELS79], where it was shown that the profile of s different connected
graphs is a full dimensional subset of [0,1]s. The only fully understood cases are
the profiles of the edge and complete graph Kn, where first the case n = 3 was
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d block sizes total size

0 11 1
1 2112 4
2 51422213 20
3 191142131918371342215 121
4 78169168165151149141240137134126222121120215112194

815143342319
823

5 435137513421334128712781277127112481237123612351

2341162115511511144112111133921901881831742691651

631571551522461301291281272261251232191161141132121

1119551473823113

6278

Table 8.3: The block-sizes of the symmetry reduced Lasserre hierarchy generated
by graphs with up to d = 5 edges (i.e., graphs with up to 2d edges appear in the
coefficients).

t block sizes total size

1 11 1
2 2112 4
3 432112 16
4 22116114211181716151312111 109
5 1541128112011161791781761721701441431401341291281

23119113151
1171

6 21161194011594113761135011306112601122811076110541

996176917241682159815101495145414441384130912961

2441214120511571156112911221231

22211

Table 8.4: The block-sizes of the symmetry reduced Lasserre hierarchy generated
by graphs with up to t = 6 vertices (i.e., graphs with up to 2t vertices appear in
the coefficients).
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d block sizes total size

0 11 1
1 2112 4
2 51422213 20
3 1811411311218471342215 117
4 72165160158149146140236134130126221219117115112194

815143342319
775

5 380131413131306126012521242122812271226121912151

1891154115011351116111211081981931882871811731701

681621591561551522351301291281272261241231211191

1611411321211119551473823113

5717

t block sizes total size

1 11 1
2 2112 4
3 3313 12
4 131918172432212 62
5 4914313713512712512412221511311229181624111 370
6 2861280120121921178217011661157113411101991891811

73268161145140139135131122220118116111
3086

7 22481201711979118201174011684116471159511407112601

116211049110391100418751832174217381641163216151

575157314951475142213531329132413121302128312811

261125712231182116211531132188161153152181

33082

Table 8.5: The block-sizes of the symmetry reduced Lasserre hierarchy generated
by bipartite graphs up to d = 5 edges resp., t = 7 vertices.
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shown by Razborov [Raz08] using an inductive flag SOS based proof involving
combinatoric derivatives, followed by the case n = 4 in [Nik10], and the general
case in [Rei16]. There is no fully understood profile of three or more graphs, but
partial results for the profile of graphs with up to three vertices are in [Hua+13]
and [Gle+16].

Graph profiles are inherently interesting objects, as the profile of graphs
G1, . . . , Gm models all optimization problems involving linear combinations of
the graphs G1, . . . , Gm and their powers, including (in-)equality constraints
built with the same graphs. If one can find a description of the profile P =
profile(G1, . . . , Gm), answering whether f =

∑m
i=1

∑
k∈N ci,kGk

i is nonnegative,
where ci,k ∈ R are scalars, simplifies to asking whether f bounds the profile
P. If we can describe (or at least bound) P using polynomials in m variables
corresponding to the m graphs, this reduces the problem to a potentially much
easier polynomial optimization problem in m variables, replacing the big flag
SOS hierarchies. Similarly, we can add additional constraints to profiles to for-
mulate problems from extremal graph theory with forbidden subgraphs, or more
complicated constraints.

A multitude of open questions can be formulated this way. For example,
Sidorenko’s conjecture (6.16) would be answered if one can determine all graph
profiles profile( , H), where H is bijective, as the conjecture implies one of the
functions bounding these profiles. Another longstanding open problem is related
to crossing numbers: the rectilinear crossing number of a graph is the minimum
number of edges that cross in any drawing of the graph. The minimum number
of crossings is still open for complete and complete bipartite graphs (the bipar-
tite setting is also known as Turan’s brick factory problem, see [KST54]). If one
works in the flag algebra of limits of point order types [Goa+18], one can for-
mulate the limit of the (appropriately scaled) crossing number of the complete
graph as a problem of order types with up to four vertices. If one additionally
adds two colors to the theory, one can formulate the limit of the crossing number
of the complete bipartite graph as well. Both of these questions can be seen as
asking to optimize within a profile of small order types in a given direction, which
corresponds to the number of crossings in the limit.

In [Ble+20b] the authors show that graph profiles are limits of sequences of
feasible sets of polynomial matrix inequalities, which they call SOS-profiles, but
they also show that the simple looking profile of the edge e and the path P3 with
three edges cannot be proven using a finite level of the flag SOS hierarchy. More
specifically, the Blakeley-Roy inequality P3 − e3 ≥ 0, which gives one of the sides
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of the profile, cannot be proven using a finite flag sums-of-squares certificate.

Graph profiles are not necessarily convex or semi-algebraic, as can be seen
from the easiest fully known profile, the edge-triangle graph profile, as shown in
Figure 8.1. It is clearly non-convex, and one needs infinitely many polynomials
to define its lower bound.

Figure 8.1: The edge-triangle graph-profile.
The graph profile from [Raz08] shown in gray. The red line is an exaggeration of its lower
bound to make its features more distinct.

Bounding Graph Profiles. We are interested in outer approximations of graph
profiles of given graphs G and H. While we can clearly say that a point (x , y) is
not in the G-H-profile, if we can prove that −1 is a sum-of-squares in the variety
determined by G = x and H = y , this only allows us to exclude points from
profile(G, H). Instead, we are going to try to find univariate polynomials flower :
R→ R and fupper : R→ R which bound the profile as close as possible from below
and above. To this end, we approximate the problems

max

∫ 1

0

flower(x) d x min

∫ 1

0

fupper(x) d x

s.t. H − flower(G)≥ 0 s.t. fupper(G)−H ≥ 0
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using flag sums-of-squares. Given two feasible solutions flower and fupper, we
clearly have

profile(G, H) ⊆ {(x , y) : flower(x)≤ y ≤ fupper(x), x ∈ [0, 1]}.
For example, we obtain the outer approximation in Figure 8.2 from the third

level of the Lasserre hierarchy. While the upper bound is a good approximation

of the exact bound
q

3, the lower bound is quite far from sharp.

Figure 8.2: Outer approximation of the edge-triangle profile.
The outer approximation obtained from the third level of the Lasserre hierarchy, i.e., the
univariate lower and upper bounds have degree 6. The exact profile from [Raz08] is
shown in red.

Piecewise Approximations. We can obtain a significantly better approximation
by cutting the interval [0, 1] into small steps [0,1] =

⋃
i[ai , bi], and solving sums-

of-squares approximations of the problems

max

∫ bi

ai

flower,i(x) d x min

∫ bi

ai

fupper,i(x) d x

s.t. H − flower,i(G)≥ 0 s.t. fupper,i(G)−H ≥ 0

ai ≤ G ≤ bi ai ≤ G ≤ bi

for each i. Note that due to the inequalities, "nonnegative" now means that H −
flower,i(G) respectively fupper,i(G)− H lie in the quadratic module (1.8) given by
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the two inequalities, and are thus of the form

s0 + (G − ai)s1 + (bi − G)s2,

where s0, s1 and s2 are flag sums-of-squares.

By cutting the interval into just 20 equal parts we already obtain a much bet-
ter approximation of the edge-triangle-profile, as shown in Figure 8.3. In total,
computations took about 5 seconds. While the bound is not sharp (and never will
be everywhere), this level of the hierarchy correctly captures some non-convexity
in the interval [1

2 , 2
3].

Figure 8.3: Piecewise outer approximation of the edge-triangle profile.
The outer approximation of the edge-triangle profile obtained from the third level of the
Lasserre hierarchy, where the interval [0,1] has been cut into 20 equal parts. The exact
profile from [Raz08] is shown in red, the functions computed approximating the profile
in blue.

This way we can quite rapidly obtain (rough) approximations for several pre-
viously unknown graph-profiles. Approximations of all graph profiles between
graphs with at most 4 vertices are shown in Figure 8.4. It took about 11 min-
utes to calculate all of them with Mosek on an i7-1185G7. Better approximations
coming from higher levels of the hierarchies, or more precise ones, can easily be
calculated with more time with the developed Julia software package described
in Section 8.7.
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Figure 8.4: Outer approximations of graph profiles of pairs of graphs with at most
4 vertices.
The bounds were obtained from the Lasserre hierarchy generated by the orbits of graphs
with up to 4 vertices (and thus containing products with up to 8 vertices). The interval
[0, 1] has been cut into 10 equal parts for each of the squares, which each denote the area
[0, 1]2.
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Profiles of Harmonic Flags. In Section 6.6 we introduced harmonic flags, a dif-
ferent basis of the flag algebra, which comes from the characters of the binary
hypercube. We can also compute their profiles, which are always contained in
the squares [−1,1]2, by either writing them as linear combinations of flags by
equation (6.9), or by generating the SDP starting out in the harmonic basis. The
symmetry adapted basis is found analogously, as we only need to adjust the gluing
operation to delete edges glued on top of each other, as seen in Section 6.6.

Proposition (6.9) tells us that these profiles of harmonic flags are slices of the
higher dimensional profiles involving all graphs appearing as subgraphs in the
two harmonic flags. As for regular flags, we give outer approximations of all pairs
of harmonic graphs with up to four vertices in Figure 8.5, as well as a bigger view
at the profile of the harmonic graphs corresponding to the edge and the complete
graph on four vertices in Figure 8.6. While we did not manage to prove that any
of these approximations are sharp, these slices were fully unknown before, and,
already for these very small cases, seem to exhibit much more varied behaviors
than the profiles of pairs of flags in Figure 8.4. But the approximations in Figure
8.5 also visualize a weakness of this approach: Since we only approximate the
profile with a function from above and below, we potentially miss big details. Of
course the G-H-profile is exactly the same as the H-G-profile after swapping the
coordinates. But we obtain, for example, very different approximations of the two
profiles for the harmonic flags corresponding to and .

Remark 8.10. Using the harmonic basis as initial basis for the symmetry reduc-
tion seems to have some computational advantages. Despite solving the same
amount of very similar SDPs, where the SDPs have the exact same block-sizes and
structure, computing the approximations in Figure 8.4 took about 11 minutes,
while computing Figure 8.5 took only 8.

One could now think that the reason for this could be the different gluing op-
eration for harmonic flags: As seen in Section 6.6, the product between harmonic
flags deletes edges that are glued on top of each other. While this does reduce
the number of total non-zero coefficients in the data matrices of the SDP in some
cases, as seen in Table 8.6, it actually increases the number of nonzero coefficients
in the case used for the Figures (t = 4).
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Figure 8.5: Outer approximations of graph profiles of pairs of harmonic graphs
with at most 4 vertices.
The bounds were obtained from the Lasserre hierarchy generated by the orbits of harmonic
graphs with up to 4 vertices. The interval [−1,1] has been cut into 10 equal parts for each
of the squares, which each denote the area [−1, 1]2.



Chapter 8. Symmetry Reduced Flag SOS Hierarchies 205

Figure 8.6: Outer approximation of the profile of the character flags correspond-
ing to the edge and K4.
A bigger view at one of the profiles shown in Figure 8.5. The same level of the hierarchy

was used, but the interval was cut into 100 equal parts. Both the upper and lower bound

were approximated piecewise by degree four polynomials. Using this profile, we can

prove any bounds coming from functions bounding the gray area from the outside, where

a sufficiently big gap should be left due to the numerical nature of the bounds.
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Number of nonzero coefficients

d flags Harmonic flags

1 8 8
2 149 146
3 7062 6800
4 748123 713390

t flags Harmonic flags

1 1 1
2 8 8
3 100 97
4 5285 5339
5 1600307 1750120

Table 8.6: Total number of non-zero coefficients in the symmetry reduced Lasserre
hierarchy for two different bases, generated by orbits of graphs with at most d
edges respectively at most t vertices.

The better computational performance should thus be related to the orthog-
onality of the harmonic basis. Intuitively, comparing the two Figures 8.4 and 8.5
tells us that the feasible set of the dual (moment) side of the SDP is "thicker", i.e.,
we can fit a bigger ball in it, as the harmonic profiles generally seem wider than
the graph profiles. Formalizing this remains a task for future work.

Since swapping to harmonic flags is just another change of basis for any of the
here considered hierarchies, it remains to be seen whether reformulating prob-
lems in the harmonic basis can lead to computational advantages for general
problems.

8.6 Flag Algebras for Degenerate Extremal Combina-
torics

While flag algebras have proven a powerful tool in dense extremal combinatorics,
they inherently fail if the considered extremal models are sparse, then called de-
generate, in the sense that all sub-flag densities tend towards zero. In this section
we give a small example, to be considered a "proof of concept", that shows that
one can extend flag algebras to these degenerate cases, at the cost of significantly
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more complicated product rules.
The easiest case to consider here is the case of graphs without 4-cycles, we

can show using flag SOS that
ex( ; ) = 0.

In cases such as these, we are instead interested in the rates at which the con-
sidered densities approach zero, especially the leading term. Here it is known
([KST54]) that, if the considered graph sequence is C4-free, we have

≤ n+
p

4n3 − 3n2

4
�n

2

� =
1p
n
+ o

�
1p
n

�
→ 0.

In [Ray+18] the authors translated the proof of [KST54] into the setting of sums-
of-squares, building an SOS-certificate for every (big enough) n.

We are interested in building a single SOS based certificate, which proves the
leading term 1p

n exactly. While this is a weaker result, it is of interest to have a
better method for this setting, as degenerate extremal combinatorics is a lot less
well-understood than dense extremal combinatorics. See, for example [FS13] for
an extensive survey on the topic. Excluding any bipartite graph always results in
a degenerate limit, and already for "easy" cases such as C6-free graphs the leading
coefficient, and for C8-free graphs the leading exponent are not known.

A Sequence of Small SDPs. Let us consider sums-of-squares, where the squared
polynomials can be written in just 6 elements of the symmetry adapted basis:

µ1 = (n) : B1 = {b11, b12, b13}= {∅, , },

µ2 = (n− 1,1) : B2 = {b21, b22}=
¨

,

«
,

µ3 = (n− 2,2) : B3 = {b31}=
¨ «

,

i.e., we here consider an SDP with three blocks of sizes 3, 2 and 1.
Normally, we would now compute the limits of the symmetrized products (8.5)

to obtain the flag SOS hierarchy for the case that n→∞. Instead, let us calcu-
late all products dependent on n (where n is big enough), without rescaling by
dividing trough n to the power of unlabeled vertices. Normally we would avoid
calculating these in-between steps by immediately sending unlabeled vertices to
distinct vertices.
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For example, to compute the unscaled non-limit product P2
11 coming from

b21 b21, we calculate

b21 b21 = lim
n→∞

1
n2

°
²
 ∑

i ̸=2

2

i
−
∑
j ̸=1

1

j

!2
±
³

= lim
n→∞

1
n2


2

°
²
 ∑

i ̸=2

2

i

!2
±
³− 2

°
²
 ∑

i ̸=2

2

i

∑
j ̸=1

1

j

!2
±
³



= lim
n→∞

1
n2

�
2(n− 1) + 2(n− 1)(n− 2)

− 6(n− 2) − 2 − 2(n− 2)(n− 3)
�

= lim
n→∞

1
n2

�
(2n− 4) + (2n2 − 12n+ 16) + (−2n2 + 10n− 12)

�

= lim
n→∞

1
n2

P2
11(n).

We can compute the other entries similarly to obtain the three matrices
P1(n) = (P1

i j(n))i, j=1,...,3, P2(n) = (P2
i j(n))i, j=1,...,2 and P3(n) = (P3

i j(n))i, j=1,...,1

containing linear combinations of flags with coefficients that lie in R[n].
If we now rescale the rows and columns of each block with the appropriate

functions and take the limit, we obtain the normal limit hierarchy:

P1
lim := lim

n→∞
�
1, n−2, n−3

�
P1(n)




1
n−2

n−3


=




1



P2
lim := lim

n→∞
�
n−1, n−2

�
P2(n)

�
n−1

n−2

�
=

�
2 − 2 2 − 2
2 − 2 2 − 2

�

P3
lim := lim

n→∞
�
n−1

�
P3(n)

�
n−1

�
=
�
4 − 8 + 4

�
.

With this limit we can indeed prove that ex( ; ) = 0. This is easier to see in
the dual: There we turn the graphs , , , , , , and into real vari-
ables (moments) in [0,1], and assume P i

lim ≽ 0 for i = 1, 2,3. It is straightforward
to see that = 0 and P i

lim ≽ 0 together imply that = 0, proving ex( ; ) = 0.

The approach taken in [Ray+18], which is based on the proof in [KST54],
now instead constructs an SOS-based proof for each n, i.e., in our notation we
would equivalently give matrices X i(n) with coefficients that depend on n, which



Chapter 8. Symmetry Reduced Flag SOS Hierarchies 209

are positive semidefinite for each n, such that

〈P1(n), X1(n)〉+ 〈P2(n), X2(n)〉+ 〈P3(n), X3(n)〉= −
n+
p

4n3 − 3n2

4
�n

2

� ≥ 0.

Considering a Different Limit. We are interested in the leading term alone;
we want to show that ≤ 1p

n + o
�

1p
n

�
. Multiplying the inequality with

p
n, we

equivalently want to prove that

lim
n→∞1−pn ≥ 0.

This idea leads to the definition of degenerate flags. For a flag G and function
f (n), we define

G f (n) := lim
n→∞ f (n)p(G, G),

which captures the density of G at rate f . We assume, without loss of generality,
that f (n) is positive for n big enough, since G− f (n) = −G f (n). While degenerate
flags not necessarily converge, we can still find product rules for them.

For example, consider the square of the density of
1

at rate
p

n:

��
1
p

n

�2�
= lim

n→∞
p

n2 1
n2

°
²
 ∑

i ̸=2

2

i

!2
±
³

= lim
n→∞

1
n

�
(n− 1) + (n− 1)(n− 2)

�

= + n−3

= + n − 3 .

While these gluing rules are generally much more complicated than the gluing
rules for regular flags, they are easier than using the full expressions for finite n,
as we only catch some higher order terms. We can again consider sums-of-squares
in this extended algebra. Here we need to make use of a key observation:

G f −Gg ≥ 0 if there is an N > 0 such that f (n)− g(n)≥ 0 for all n> N . (8.6)

This allows us to construct SOS certificates that only hold for n big enough. For
example, we can say that

Gn − 5Gpn ≥ 0,
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despite it not being nonnegative in the finite setting. Adding all of these inequali-
ties to the extended algebra (resp. as quadratic modules to the SDP) is not possible
computationally, as there are infinitely many of them. For example

Gn −αG ≥ 0

for every choice of α, requiring an inequality for every α. Still, for a given certifi-
cate, we can check whether it holds in the limit. What we can do practically is to
add inequalities of the form G f −αGg ≥ 0 to the program for a very big constant
α (since Gg is assumed to be nonnegative in the limit, this implies all inequalities
with a smaller factor than α), for every pair of functions f , g appearing as rates
of the same subgraph density with g ∈ o( f ).

To formulate a degenerate SOS proof, we thus want to rescale the rows and
columns of the P i(n) with functions that depend on n, to not change the SDPs for
finite n. In this case, where we want to maximize the edge density in a 4-cycle
free graph, we choose the degenerate symmetry adapted basis

¨
∅, pn, n, p

n
,

n
,

n

«

to generate our SDP.
We can now give a single SOS based proof for the first order of the edge density

in triangle free graphs:

1− p
n =

1
4

� p
n − n

�2

+
1
4

�
2− p

n − n

�2

+
1
4

�
p

n

�2

+
1
2

�
n

�2

+
1
8

�

n

�2

+ g ≥ 0,

where we assumed that f (n) = 0 for all functions f , and g is a positive linear
combination of terms of the form (8.6).

While we can compute the products of degenerate flags with the algorithm
from Section 8.3.3 by implementing it in a way to allow for univariate polynomial
exponents of the polynomials, one still needs to guess all the rates of flags and
inequalities (8.6) necessary to actually build the SDP. It remains to be seen if
this can be done automatically, potentially by using an iterative approach, or by
including the same columns at multiple different rates at the same time.
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8.7 Software: FlagSOS.jl

Every hierarchy and reduction described and result given in this Chapter as well
as Chapter 9 were computed using a custom Julia software package called "Flag-
SOS.jl", (soon to be) available at https://github.com/DanielBrosch/Flag
SOS.jl. All algorithms were implemented in a way that allows for them to be
generalized easily to any kind of flag, as well as translate between different bases
such as the non-induced, induced and harmonic basis. While there is an existing
software package called "Flagmatic" [FV13] for Razborov’s vertex truncated hier-
archies described in Chapter 9, it does not implement the Lasserre hierarchy for
flags, and only supports (directed and undirected) graphs and 3-uniform hyper-
graphs.

Implementing Different Kinds of Flags. Depending on which features one re-
quires, one needs to implement different black-box functions for the theory of
models the flag algebra is based on. For the main reduction algorithms one re-
quires a function that glues two flags together, as well as functions canonically
labeling a flag, and determining its group of automorphisms. If one cannot pro-
vide a better alternative (such as NAUTY/TRACES [MP14]), the package contains
a basic generalized version of the NAUTY/TRACES algorithm to canonically label
flags and determine their automorphisms. While the speed of the implementation
is not competitive with [MP14], it can easily be used for different kinds of flags,
given a function that distinguishes a vertex v in some way from others relatively
to a group M of other vertices. For example, for graphs (and hypergraphs) it
would be enough to return the number of edges between v and the vertex group
M . If one also wants to generate flags up to isomorphism or swap between the
different bases, one needs to be able to provide (some abstract representation of)
predicates in a flag, as well as potentially check the axioms of the theory.

https://github.com/DanielBrosch/FlagSOS.jl
https://github.com/DanielBrosch/FlagSOS.jl
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9
An Alternative Hierarchy Intertwining the

Lasserre Hierarchy for Binary Problems
with Sn Symmetry

The Lasserre hierarchy grows very quickly as one increases the level d of the hier-
archy, which contains polynomials up to degree 2d. What if we want to compute
bounds for problems of high degree? We saw earlier in Section 6.4 that induced
subgraph densities correspond to (limits of) polynomials of degree

�k
2

�
, where k is

the number of vertices of the graph. To even be able to formulate problems formu-
lated in induced subgraph densities, one would need a high level of the Lasserre
hierarchy. In this chapter we investigate a different truncation of the hierarchy,
introduced by Razborov [Raz07]: we truncate the hierarchy by the number of
vertices of flags. While Razborov formulated the hierarchy directly in the setting
of flags, we show how to obtain this hierarchy from the Lasserre hierarchy, give
some ideas as to how it can be generalized to other problems, and how it can be
reduced further. We obtain a very strong reduction in block-sizes without needing
to rely on Artin-Wedderburn theory, which is often used for symmetry reductions,
and it may be very fruitful if one attempts similar reductions for other highly sym-
metric combinatoric problems in the future. This chapter should be seen as a

213
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"recipe" for similar hierarchies for highly symmetric problems in binary variables,
such as constant weight error correcting codes, or potentially packing problems
(under suitable modifications).

Main Contributions. We introduce a symmetry-reduction technique based on
Möbius transformations for binary polynomial optimization problems, and con-
struct a hierarchy, based on a different truncation of the Lasserre hierarchy, for
which the reduction is very well suited. We show that the constructed hierarchy,
after reduction, generalizes Razborov’s hierarchy for flag algebras [Raz07]. This
allows us to compare the strength of the (generalized) Razborov and Lasserre
hierarchies in Theorem 9.16. We then show how to continue from Razborov’s
definition, exploiting further symmetries contained in the hierarchy.

Outline of this Chapter. As we will see in this chapter, the generalized Razborov
hierarchy, while more complicated to define, is very well suited for a symmetry re-
duction based on Möbius transformations, without having to rely on complicated
representation theoretic tools.

The generalization of Razborov’s hierarchy will be defined through a series
of relaxations of a high level of the Lasserre hierarchy: We start by truncating
the hierarchy by the number of vertices in Section 9.1, where we enforce a strict
sparsity pattern. This sparsity pattern will forbid monomials with more than T
vertices from appearing, even when cancelled out.

Next, in Section 9.2, we will decompose the semidefinite variable into the max-
imal cliques of the sparsity graph, and determine the "biggest" maximal cliques.
At this step we obtain a trivial symmetry reduction by only considering maximal
cliques up to symmetry, eliminating most of them in the process. We then further
relax the hierarchy to ignore all but the "biggest" maximal cliques, which have a
lot of additional structures we can exploit.

The blocks corresponding to this special family of maximal cliques are each
symmetric under the action of Sk × Sn−k ⊆ Sn, for a k ≪ n. Crucially, each of
these cliques will be closed under multiplication with variables invariant under
Sn−k, which makes it possible to apply a Möbius transformation to each of them,
diagonalizing each orbit under Sk, resulting in a significantly stronger reduction
than symmetry reduction coming from Sk.

The final relaxation, described in Section 9.3, is equivalent to the hierarchies
defined by Razborov, and results, in his language, in sums-of-squares in each flag
algebra Aσ of each type σ. It is here equivalently obtained by only considering
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the trivial isotypic component of the action of Sn−k, i.e., we restrict ourselves to
the subspace invariant under Sn−k in each block. Despite these quite significant
relaxations it is still possible to compare the strength of the resulting hierarchy to
the Lasserre hierarchy in both directions, which we will show using some conse-
quences coming from the representation theory of Sn.

Finally, we can reduce the hierarchy further, by exploiting the remaining sym-
metries in the leftover blocks.

While most of the constructions in this chapter can be generalized for groups
other than Sn, the case of Sn is easier to handle, and allows us to compare the
hierarchies we end up with. We will here focus on the case of the flag algebras of
graphs.

9.1 A Vertex Truncation of the Lasserre Hierarchy

Let [X ] be the monomial basis of the ring of polynomials R[x] (in binary vari-
ables), where Sn acts on [X ] via permutations. In the case of graphs, for example,
the variables x i j correspond to edges, as explained in detail in Section 6.5. Sums-
of-squares inR[x] can be written as [X ]T M[X ], where M is a positive semidefinite
matrix. The Lasserre hierarchy is now obtained by truncating the basis vectors to
only contain monomials up to a degree d ∈ N, that is we optimize over nonnega-
tive polynomials of the form [X ]≤d M[X ]≤d .

We now want to truncate the hierarchy instead by the number of "vertices" in
the appearing monomials. To do this, we first generalize the number of vertices
of a flag to more arbitrary operations of Sn.

Definition 9.1. Let m be a monomial. The vertex set V (m) of m is the smallest set
A⊆ [n] such that the stabilizer of m

(Sn)m := {σ ∈ Sn : σ(m) = m}
contains all of S[n]\A, i.e.

V (m) := argmin
A⊆[n]

|A| s.t. (Sn)m ⊇ S[n]\A.

Example 9.2. Consider the setting of graphs, for n≫ 3 and m= x13 x23. Then

(Sn)x12 x23
= S{2,3} × S[n]\{1,2,3} ⊇ S[n]\{1,2,3},

and V (m) = {1,2, 3}, since n is assumed to be big. If n was small, say n= 4, then
we would instead have V (m) = {1,4} since (Sn)x12 x23

⊇ S[n]\{1,4} = S{2,3}. But if n
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is big enough, the automorphism group of the considered graphs is small enough
for this definition to exactly correspond to the number of vertices of the graph.

If a graph contains less than half of all vertices in [n] (or does not have a
very big automorphism group), then this definition generalizes the vertex set of a
graph, when interpreting them as monomials as explained in Section 6.5. In the
following we assume T ≪ n, the upper limit on the vertices, is small enough to
not have to worry about these edge cases.

Similar to the degree of monomials, this function behaves nicely when multi-
plying two monomials m1, m2, which both have small enough vertex counts. We
have

V (m1m2) = V (m1)∪ V (m2), (9.1)

since (Sn)pq ⊇ (Sn)p ∩ (Sn)q, and for small vertex counts the automorphism group
of pq will not be bigger than Sn−|V (m1)∪V (m2)|.

We can now define a vertex truncated hierarchy VertT for each natural number
T . As happens "for free" in the degree constrained hierarchy, we do not want
any terms cancelling out that have more than T vertices here either. But first,
analogously to the degree constrained hierarchy, we simply truncate the basis
vector to only contain basis elements with up to T vertices:

BT := {m ∈ [X ]: |V (x)| ≤ T}.

Let f =
∑

m∈BT
cmm be a polynomial. We define the vertex count of its square

as
V 2( f ) := max

m,m′∈BT : cm,cm′ ̸=0
|V (mm′)|,

which is not necessarily the same as the maximum vertex count of monomials
appearing in ⟦ f 2⟧, as this counts the vertices of monomials that get cancelled out
as well. For example, the vertex count of the square of the quantum graph

f =
1

2
+

2

3
− 1

2

1

3

is V 2( f ) = 3, since f 2 contains the product
1

2
·

2

3
=

1

2 3
, but ⟦ f 2⟧ = 9

4 only

contains graphs with up to two vertices.

Definition 9.3. The T th level VertT of the vertex truncated SOS-hierarchy is given
by optimizing over sums-of-squares of polynomials pi with V 2(pi) ≤ T . I.e., we
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optimize over BT
T MBT , where the positive semidefinite matrix M can be decom-

posed into rank-one matrices

M = M1 + · · ·+Mk

for some k, such that each of the matrices Mi , for i = 1, . . . , k, is positive semidef-
inite and follows the same sparsity pattern:

(Mi)m,m′ = 0 if |V (mm′)|> T

for all m, m′ ∈ BT .

To give explicit block-sizes, we will consider the specific case T = 4, i.e., we
want at most 4 vertices in all appearing graphs. We assume n is big enough for
the symmetry reduction to stabilize as seen in Proposition 8.5.

Remark 9.4. One could consider different definitions of V (m) for different prob-
lems, but this seemed the most natural at the time. If one attempts different defi-
nitions of V (m), one needs to make sure that (9.1) holds, and that there is a finite
number of orbits of monomials with |V (m)| ≤ T for constants T . Another "natu-
ral" definition for problems on graphs (such as stable set), which does not rely on
symmetries, would be simply the set of vertices appearing in the variables of the
monomial. But one could also push things further, prioritizing "local" connected
structures in graphs, by adding all vertices appearing on shortest paths between
vertices in V (m) to V (m). This would then truncate the problem to prioritize small
connected subgraphs. Note however, that without additional symmetries the re-
sulting hierarchies will quickly outgrow the computational capabilities of today’s
solvers.

Naive Approach: Symmetry Reduction. Since we are interested in solving sym-
metric sums-of-squares problems, we can exploit the symmetry of the truncated
Lasserre hierarchy as done in Chapter 8. Ignoring the sparsity pattern, the case
T = 4 corresponds to the direct sum of graph modules of graphs with up to 4 ver-
tices. We symmetry reduced this hierarchy in Table 8.4, where we obtain blocks
of sizes 22, 16,14, 14,11, 8,7, 6,5, 3,2 and 1, totaling a block size of 109, and 775
variables/entries in the SDP variables (only counting upper-triangular entries).

The problem is now the sparsity pattern: The block-diagonalization and sym-
metrization changes the rank of the matrices, and it is unclear how to formulate
the decomposition condition after symmetry reduction. But we can still obtain a
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stronger hierarchy by setting the entries of the positive semidefinite matrix M to
zero according to the sparsity pattern. Since V (σ(m)) = σ(V (m)) for monomials
m and permutations σ, the sparsity pattern itself is symmetric, and can thus be
translated into constraints for the block-diagonalized SDP.

But we can do much better, by realizing that we can assume that the rank-one
matrices Mi correspond to the maximal cliques of the sparsity pattern.

9.2 Decomposition into Maximal Cliques

We can define the sparsity graph G with vertices BT , where m, m′ are connected
if the entry Mm,m′ does not have to be zero, i.e., whenever |V (mm′)| ≤ T .

While we generally cannot decompose a matrix M with the given sparsity
pattern into a sum of matrices corresponding to the maximal cliques in the graph
G, we can clearly do so for the positive semidefinite rank 1 matrices Mi . If a rank
one matrix Mi = vvT has a zero in position (m, m′), then vmvm′ = 0, implying
that the nonzero entries of v are contained in a clique of G. So, our matrices M
in Definition 9.3 can equivalently be written as

M =
∑

C maximal clique of G

MC ,

where MC ≽ 0 is a positive semidefinite matrix which only has non-zero coeffi-
cients in rows and columns corresponding to the clique C .

Proposition 9.5. For each subset S ⊆ [n] of cardinality up to T with T ≡ |S|
mod 2, the subset

CS :=
§

m ∈ BT : |V (m) \ S| ≤ T − |S|
2

ª
⊆ BT

is a maximal clique of the sparsity graph G

Proof. By V (m1m2) = V (m1)∪V (m2) any product between elements in CS has at
most |S|+2 T−|S|

2 = T vertices, i.e., every CS is a clique. Since we assumed T ≪ n
we can, for each m1 not contained in CS , find an element m2 in CS with (V (m1)∩
V (m2))\S = ; and V (m2) = |S|+ T−|S|

2 . Then |V (m1m2)|= |V (m1)∪V (m2)|> T ,
and m1 cannot be added to the clique CS .
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Example 9.6. Let T = 4, S = {1,2} in the case of (undirected) graphs. Then CS

contains all graphs with at most one vertex not in S, i.e., it contains the elements

∅,
1

i
,

2

i
,

1

2 i
,

1

2 i
,

1

2 i
,

1

2 i

for all choices of i ∈ [n]. Products between any two elements of CS result in a
graph on at most 4 vertices, and adding any other would result in a graph with at
least 4 vertices.

Sadly, this construction does not to give all maximal cliques of G. For example,
in the case T = 3, we obtain another clique

Cmissing =

�
∅,

1

2
,

1

3
,

2

3

�

which is not one of the cliques in Proposition 9.5. However, Cmissing is contained
in the clique C{1,2} in the case T ′ = 4.

While this family of maximal cliques CS are not all the maximal cliques in the
sparsity graph G, they are the "biggest" in the sense that they have the most "freely
choosable labels" such as the vertices labeled i in Example 9.6. Furthermore, as
seen in Proposition 9.7 below, all other cliques are contained in cliques of this
form if we increase T enough.

Proposition 9.7. Let C be a clique of the sparsity graph G on BT . Then C is con-
tained in a maximal clique of the sparsity graph on B2T , of the form CS of Proposition
9.5.

Proof. Let m be an element of C with the maximum number of vertices of elements
in C . Any other element m′ ∈ C has at most T−|V (m)| vertices outside V (m), and
is thus contained in the clique CV (m) of the case T ′ = |V (m)|+ 2(T − |V (m)|) =
2T − |V (m)| ≤ 2T .

Generally this bound is quite weak, as we only used the fact that all monomials
have to intersect the biggest monomial of each clique, even though they all have
to intersect each other. For example, the clique Cmissing of the case T = 3 already
appears in C{1,2} of the case T = 4. We will now simply ignore all cliques that do
not fit into this construction, making the relaxation somewhat weaker.

We can now immediately exploit the symmetry of the problem by restricting
the hierarchy to only contain the blocks with S = {1, . . . , |S|}, as blocks corre-
sponding to sets S of the same cardinality are identical by the action of Sn. This
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results in a strong symmetry-reduction, for which we did not have to think about
the representation theory of Sn. In the case T = 4 we obtain 3 maximal cliques of
type CS:

C; =
�
∅,

i

j : i < j ∈ [n]
�

,

C{1,2} =

¨
∅,

1

2
,

1

i
,

2

i
,

1

2 i
,

1

2 i
,

1

2 i
,

1

2 i
: i > 2

«
,

C{1,2,3,4} =
¦

The 2(
4
2) = 64 graphs on {1, 2,3,4}

©
.

Proposition 9.8. Each clique CS is invariant under action of SS × S[n]\S . Further-
more, if x is a variable with V (x) ⊆ S, then

xCS = {xm : m ∈ CS} ⊆ CS .

Proof. Immediate by definition of CS .

We could now try to exploit the SS × S[n]\S symmetry of each block corre-
sponding to each clique CS , but this proposition tells us we can do much better. It
implies that the Möbius transformation on the vertices in S, in the sense of Sec-
tion 6.4, is a basis transformation on the span of CS . Indeed, the elements in each
CS are linearly independent, and we obtain a better basis by applying a Möbius
transformation on it. We can do this by multiplying each monomial m, for each
variable x that does not appear in m with V (x) ⊆ S, with (1 − x). Now, since
we are working with binary variables, we know that x(1− x) = 0, which causes
elements of the transformed basis to be orthogonal to each other (in the sense
that pq = 0), if they differ on the vertices in S.

In the case T = 4 the first clique C; does not change since S is empty there, but
the block corresponding to C{1,2} is block-diagonalized, and C{1,2,3,4} is linearized
by the transformation. The block C{1,2} splits into two, one for each graph on two
vertices up to isomorphism:

B{1,2}

�
1

2

�
:=

¨
1

2
,

1

2 i
,

1

2 i
,

1

2 i
: i > 2

«
,

B{1,2}

�
1

2

�
:=

¨
∅−

1

2
,

1

i
−

1

2 i
,

2

i
−

1

2 i
,

1

2 i
−

1

2 i
: i > 2

«
,

where ∅ is the empty graph, which always has density one (i.e. ∅ corresponds to
the constant 1 polynomial).



Chapter 9. An Alternative Hierarchy for Binary Problems with Sn Symmetry 221

In general, each block corresponding to a clique CS splits into one block cor-
responding to B(m) for each monomial m (graph H) with V (m) ⊆ S (vertices in
S), where

BS(m) := (mindCS \ {0}) ⊂ span(CS).

Here mind is the linear combination of monomials corresponding to the induced
density of the fully labeled graph on S corresponding to m, as explained in Section
6.4, i.e.

mind = m
∏

x:V (x)⊆S
x does not appear in m

(1− x).

Thus, Proposition 9.8 directly implies

span(CS) = span

 ⋃
m monomial: V (m)⊆S

BS(m)

!
,

as we can use the formulas introduced in Section 6.4 to transform between ele-
ments of CS and the union of the BS(m). Since our variables are binary, we have
x(1− x) = 0 for each variable x , and thus

pq = 0 for all p ∈ BS(m), q ∈ BS(m
′),

if m ̸= m′ are monomials with vertices in S. Hence, this block-diagonalizes the
block corresponding to CS , and we can then delete copies of blocks by the symme-
tries of Sn, further reducing the hierarchy to have one block for each monomial
(graph) up to isomorphism.

Remark 9.9. The reduction obtained from the Möbius transformation is strictly
better than exploiting the symmetry Sk in each block, as it fully removes some
orbits of pairs of basis elements. While it does "break" the symmetries in the sense
that the resulting blocks BS(H) each have a smaller symmetry group Aut(H) ×
Sn−|S| instead of S|S|×Sn−|S|, the orbits that got cut into smaller orbits have all but
one of the new orbits deleted simply by the process of deleting copies of blocks
(corresponding to isomorphic copies of H).

Remark 9.10. The Möbius transformation allows us to define equivalent submod-
ules between any product is zero, in seeming contradiction to Theorem 7.8 stating
that none of the block-diagonalized SDP entries are the zero polynomial. For ex-
ample, consider the two submodules
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M1 = span

¨
1

2
,

1

2

«
⊂ B{1,2}

�
1

2

�
,

M2 = span

¨
1

2
−

1

2
,

1

2
−

1

2

«
⊂ B{1,2}

�
1

2

�
.

The two submodules are equivalent, as they are both isomorphic to the S2-
permutation module M (1,1), but any product between elements of M1 and M2 is
zero, since x1,2(1− x1,2) = 0:

M1 ≃ M2 and (pq = 0 ∀p ∈ M1, q ∈ M2) .

The reason this is not truly a contradiction to Theorem 7.8, is that we are opti-
mizing over the algebraic variety of the binary hypercube instead of polynomials
in complex variables. The field {0,1} = F2 is not algebraically closed, which is a
requirement for the second part of Schur’s Lemma 7.5 to hold. (While R is not
algebraically closed either, we can always block-diagonalize a problem with Sn

symmetry over the reals.)

9.3 Razborov’s Hierarchy

We can now define the hierarchy Razborov uses, which is, for example, imple-
mented in the software package Flagmatic [FV13]. It is obtained by relaxing the
hierarchy again, this time by only considering elements in the span of the Cm

which are invariant under S[n]\S (i.e., the vertices outside S are unlabeled/sym-
metrized over all vertices outside S).

Definition 9.11. Let T be an integer. The T th level RazT of the Razborov hierarchy
is obtained by optimizing over sums-of-squares of the form

∑
k:k≤T,

k≡T mod 2

∑
m monomial up to isomorphism,

V (m)⊆[k]

⟦pm,k⟧,

where pm,k is a sum-of-squares of polynomials in

Am,k := span{ f ∈ B[k](m) : σ( f ) = f for all σ ∈ S[n]\[k]},

which is the trivial isotypic component of the action of S[n]\[k] on B[k](m).
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Remark 9.12. The vector spaces Am,k are exactly the (truncations of the) Flag
algebras of type σ Razborov defined in [Raz13], where σ is the induced graph
on [k] corresponding to m (if we let n go towards infinity). These are given by
the spans of the induced flags which are, when restricted to [k], exactly σ, and
are unlabeled otherwise. These form algebras themselves, but the unit of Am,k is
the fully labeled induced flag σind instead of the empty flag. Note however, that
our basis is slightly different from his, as we only consider partially induced graph
densities, where only the fully labeled part on [k] is induced.

Example 9.13. Let T = 4. Here the hierarchy Raz4 optimizes over 3 semidefinite
matrices. We have one 2× 2 block given by

A∅,0 = span
�
∅,

	
,

two 4× 4 blocks given by

A ,2 = span

¨
1

2
,

1

2
,

1

2
,

1

2

«
,

A∅,2 = span

¨
∅−

1

2
,

1
−

1

2
,

2
−

1

2
,

1

2
−

1

2

«
.

The block coming from C{1,2,3,4} diagonalizes into 11 blocks of size 1 × 1 corre-
sponding to the fully labeled graphs on four vertices up to isomorphism.

This is the hierarchy used to obtain most of the results in the flag SOS literature
(see the beginning of Chapter 6 for an overview). It may seem easy to suggest
that the Razborov hierarchy is weaker than the Lasserre hierarchy, as we obtained
it through a sequence of relaxations of it. But, it turns out that the Razborov
hierarchy can still be compared to the Lasserre hierarchy in both directions, as we
will see in the following section.

Nearly Symmetric Sums-of-Squares. First, we make an important observation
about sums-of-squares representations of polynomials invariant under some ac-
tion of Sn on the set of variables: If we can write a symmetric polynomial as a
sum-of-squares, then we can also write it as a sum-of-squares of polynomials that
are nearly symmetric. More formally, we can show the following proposition, gen-
eralizing an idea of [Ray+18].
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Proposition 9.14. Let p be a nonnegative polynomial invariant under some action
of Sn on the variables. If p has an SOS-certificate of degree d (i.e., we are considering
the bound Las2d), then we can find an SOS-certificate of p in the form

p =
k∑

i=1

RSn
(q2

i ),

where deg(qi)≤ d such that each qi is invariant under the action of Sn−dτ, where τ
is a parameter that depends on the action of Sn, and is given by

τ :=max
x

min
T⊆[n]

|T | s.t. x is invariant under action of S[n]\T =max
x
|V (x)|. (9.2)

In the case of flags, τ is exactly the maximum number of arguments a predicate takes.

Proof. The definition of τ tells us that, given the orbit of a monomial m, we can
identify an element of the orbit by giving an ordered set of at most τdeg(m)
integers in [n]. Hence, we can embed the linear span of the orbit of m in the
permutation module Mλ where λ= (n− dτ, 1, . . . , 1) where 1 appears dτ times.
Theorem 7.12 allows us to further decompose the Mλ for each monomial orbit in
terms of Specht modules Sµ where each µ is a partition with the biggest part µ1

at least n− dτ.
As seen in Section 7.2 we now need to fix a nonzero basis element of Sµ for

each µ to obtain the symmetry adapted basis for this problem. Earlier we fixed
this element to be a polytabloid et given by a fixed standard-tableau t of shape µ.
Here, we instead make a more symmetric choice. Let

eµ =
∑

t̂∼t

e t̂ ∈ Sµ,

where a ∼ b denotes row-equivalency and t is a fixed tableau of shape µ. Since
eµ is sum of polytabloids it lies in Sµ, and by definition it is invariant under the
action of ST , where T is the set of indices appearing in the first row of t. We can
fix t to the tableau we obtain by filling it row-wise, so T ⊆ [n−dτ]. The vector eµ
is non-zero, since the Young-tabloid (row equivalency class) {t} appears in each
e t̂ with positive coefficient. The proposition now follows immediately by Theorem
7.8 with this choice of element.

Remark 9.15. While this basis looks different and maybe "nicer" than when work-
ing with basis given by polytabloids, by Schur’s Lemma (and the proof of Theo-
rem 7.8) we know that for any two copies of Sµ given by φ1 and φ2 we have
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R(φ1(eµ)φ2(eµ)) = cR(φ1(et)φ2(et)) for a positive factor c ∈ R, i.e., the result-
ing hierarchy only differs by a constant factor.

If we now were to index our SDP by all polynomials symmetric under ST for
a fixed T ⊆ [n] with n− dτ elements, we obtain the partially symmetry reduced
SDP investigated in [Ray+18], which is equivalent to the Lasserre hierarchy.

Comparing the Razborov Hierarchy with the Lasserre Hierarchy. We can now
use Proposition 9.14 to compare the two different hierarchies Las2d (prioritizing a
low degree) and RazT (prioritizing low number of vertices). Let ΣLas2d

and ΣRazd

be the sums-of-squares contained in the dth level of the Lasserre resp. Razborov
hierarchy for flags.

Theorem 9.16. We have
ΣLas2d

⊆ ΣRaz2dτ

and
ΣRazT

⊆ ΣLas2k
,

where k = maxm:|V (m)|≤T deg(m) is the maximum degree of a monomial with at
most T vertices, and τ=maxx |V (x)| as in (9.2).

Proof. We show that the hierarchies appear as sub-blocks in each other, if one
considers a high enough level of the hierarchy.

The level Las2d contains polynomials of up to degree 2d. As each variable has
at most τ vertices, the appearing monomials have at most 2dτ vertices. By Propo-
sition 9.14 we can obtain the bound Las2d by considering products of polynomials
with at most dτ different labels. By definition, level 2dτ of the Razborov hier-
archy contains all products between flags with labels in [2dτ] resulting in flags
with at most 2dτ vertices, hence, it contains Las2d as sub-block.

To see the other way, note that by choice of k, the dth level of the Razborov
hierarchy contains products between polynomials of at most degree k. By defini-
tion, the level Las2k contains all products between polynomials with up to degree
k, so Razd is a sub-block of Las2k.

Corollary 9.17. In the setting of (undirected) graphs we have

ΣLas2d
⊆ ΣRaz4d

and
ΣRazT

⊆ ΣLas
2(T2)

.
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Example 9.18. If we want to find minimum p = inf f of a linear combination of
graph densities

f =
∑

i

ciGi

without further constraints, we would solve

p ≥ Las2d = sup λ s.t. f −λ ∈ ΣLas2d

or

p ≥ RazT = sup λ s.t. f −λ ∈ ΣRazT
.

Then

Las2d ≤ Raz4d ≤ p

and

RazT ≤ Las2(T2) ≤ p,

where bigger means we obtain a better bound on the minimum of f . If we had
additional constraints of the form g ≥ 0, where g is again a linear combination of
flags, we would add quadratic modules as in (1.8), but the different truncations
by the number of edges respectively vertices in the products gs, where s is a sum-
of-squares, makes the resulting hierarchies less straightforward to compare.

Remark 9.19. Generally the inequalities are strict: Raz2dτ contains significantly
more products between polynomials than Las2d , and Las2k contains significantly
more than RazT . While the choice of hierarchy does not matter much in theory,
we cannot reach high levels of either computationally, i.e., both may be a better
choice in practice than the other, depending on the problem.

Breaking Symmetry Comes at a Cost. While we always had Sk × Sn−k symme-
try for some k up the point we applied the Möbius transformation, at that point
the symmetries broke. The final blocks appearing in the Razborov hierarchy have
symmetry group Aut(G) acting on the blocks, where G is the graph (or mono-
mial) defining a block. Eventually every graph G will show up in the hierarchy
as T increases. As it is possible to construct a (finite, directed) graph with au-
tomorphism group isomorphic to any finite group by Frucht’s Theorem [Fru39],
the full symmetry reduction of the hierarchy involves the representation theory of
every finite group already in the case of directed graphs. Hence, an analytical re-
duction is here out of the question even further than for the reduction in Chapter



Chapter 9. An Alternative Hierarchy for Binary Problems with Sn Symmetry 227

T block sizes total size variables Las

4 4221111 21 34 109
3221113 21 28

5 8461134 72 199 1171
634224134 68 129

6 2021611411156 376 2082 22211
14212210192826552453101162 348 990

7 724323420111044 2440 29718
4822622482222061861621215102896324822211044 2228 11984

8 27211120264156111112346 25573 759820
17621521120111629629228427426826486064830

46244240163628326301228427424422162061818

16381512132129211310169328267462258450358

112378

23733 259220

Table 9.1: Comparing the block sizes of the Razborov hierarchy before and after
additional symmetry reduction.
The block sizes of the (full) Razborov hierarchy (rows with gray background) compared
with the block sizes of the same hierarchy, after exploiting additional symmetries com-
putationally (white background). The last column gives the total size of the hierarchy
obtained from the naive symmetry reduction approach of the Lasserre hierarchy gener-
ated by graphs with up to T vertices (see Table 8.4 for more details).

8. But what we can do, knowing the symmetry of a block, is a numerical block-
diagonalization using algorithms described in [Mur+10]. A basic implementation
of the numerical block-diagonalization algorithm is available as part of the Julia
software package "SDPSymmetryReduction.jl", described in [BK22a], which we
make use of in the package "FlagSOS.jl" mentioned in Chapter 8. Depending on
the group, this will not always be possible over the real numbers, but may require
blocks over the quaternions or complex numbers.

We give a comparison of block-sizes before and after this additional reduction
in Table 9.1. Since the total size of the SDP does not change much after this
additional reduction, we also give the total number of variables in the matrix
variables (only counting upper-triangular entries). For additional comparison,
we also give the total size of the hierarchy obtained from the naive approach
mentioned in Section 9.1, where already the case T = 6 is far out of reach of
today’s solvers with a total block size of 22211.
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A
Characterizing Nonnegative Projections

The following Theorem, originally due to Belitskii and Lyubich (cf. [BL88, p.
108]), has a typo in the proof in [BL88]. Here we include a cleaner, more de-
tailed version of the proof.

Theorem A.1. Let P be a nonnegative projection, i.e., P ≥ 0 and P2 = P. Then P is
of the form

P x =
m∑

i=1

〈x , a∗i 〉(ai + bi),

where m = rank(P), {ai} are orthogonal vectors, the set {a∗i } is biorthogonal to the
set {ai}, i.e., 〈ai , a∗j 〉 = δi j , and {bi} is orthogonal to {ai} ∪ {a∗i }. All those vectors
ai , a∗i , bi are element wise nonnegative.

Proof. The projection P is uniquely defined by the images of the elements of the
canonical basis {ei}ni=1, which we call ci := Pei ≥ 0. Thus, we can define a cone

KP := cone{c1, . . . , cn}=
¨ n∑

i=1

λici : λi ≥ 0 for i = 1, . . . , n

«
,

which has a non-empty interior when seen as subset of Im(P). We call a point
p ∈ KP extreme, if for all a, b ∈ KP \ {0} with p = 1

2(a+ b) follows that a, b and p
are collinear, i.e., are scaled versions of each other.

229
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Let m now be the cardinality of a maximum set of extreme, pairwise non-
collinear points in Kp. Then we can relabel the ei (and accordingly ci), such that

KP = cone{c1, . . . , cm},

i.e., c1, . . . , cm span the image of P. We see the support of a vector p as the set
supp(p) := {ei : pi > 0}.
Lemma A.2. supp(ci)∩ supp(c j) ⊂ ker(P) for all 1≤ i < j ≤ m.

Proof. Let ek ∈ supp(ci). Because P is element wise nonnegative (and thus ci ≥ 0),
and ci = Pei = P2ci = Pci , we have, for ϵ > 0 small enough, that

ci ± ϵPek = P(ci ± ϵek) = ((ci)k ± ϵ)Pek +
∑

l=1,...,n
l ̸=k

(ci)l Pel ∈ KP .

Since ci is extreme, we get that Pek = λci for a λ≥ 0.
Let now ek ∈ supp(ci)∩ supp(c j) for 1 ≤ i < j ≤ m. Then Pek = λ1ci = λ2c j ,

and thus, by choice of the ci , that λ= 0, and ek ∈ ker(P).

But now back to the proof of Theorem A.1. We can decompose the ci ≥ 0 for
i = 1, . . . , m by splitting their support depending on whether the coordinate is in
ker(P):

ci = ai + bi , where supp(ai)∩ ker(P) = ;, supp(bi) ⊂ ker(P).

Of course, we also have ai ≥ 0 and bi ≥ 0. Now, Lemma A.2 tells us that

supp(ai)∩ supp(a j) = ; for i ̸= j,

and by definition we have

supp(ai)∩ supp(b j) = ; for all i, j,

and thus
〈ai , a j〉= 0 for i ̸= j and 〈ai , b j〉= 0 for all i, j.

Because Pci = ci = ai + bi /∈ ker(P) we know that ai ̸= 0 for all i = 1, . . . , m,
and all ci are linearly independent, since their ai-parts all have disjoint supports.
Thus, we get that m ≤ rank(P), and we already knew that m ≥ rank(P) because
the cone KP does have non-empty interior in the image space of P.
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We now want to determine the coordinates γ(x) of P x in the basis given by
the ci , i.e.

P x =
m∑

i=1

γ(x)ici =
m∑

i=1

γ(x)i(ai + bi).

Because the ai are all nonzero, and have supports disjoint from each others and
those of the bi , these coordinates are exactly

γ(x)i =
〈P x , ai〉
〈ai , ai〉

=


x ,
P∗ai

〈ai , ai〉
·
= 〈x , a∗i 〉, where a∗i :=

P∗ai

〈ai , ai〉
≥ 0.

We see that Pai = Pai+ P bi = Pci = ci , which tells us that 〈ai , a∗i 〉= δi j , since

ci = Pai =
m∑

i=1

〈ai , a∗i 〉ci .

Finally, we see that 〈a∗i , b j〉 = 0 for all i, j, because bi ∈ ker(P). Conversely,
every such function is a nonnegative projection, as it is obviously nonnegative,
and idempotent:

PP x =
m∑

i=1

〈P x , a∗i 〉(ai + bi)

=
m∑

i, j=1

〈x , a∗j 〉〈a j + b j , a∗i 〉(ai + bi)

=
m∑

i, j=1

〈x , a∗j 〉δi j(ai + bi) = P x .

Corollary A.3. If P is a nonnegative orthogonal projection, then it is of the form

P x =
m∑

i=1

〈x , ai〉ai ,

where {ai} is a set of orthonormal, nonnegative vectors and m= rank(P).

Proof. We have seen that Pai = ai + bi , and bi ∈ ker P. Since P is orthogonal,
we have 0 = 〈ai , P bi〉 = 〈ai + bi , bi〉 = 〈bi , bi〉 and thus bi = 0. We earlier fixed
a∗i =

P∗ai
〈ai ,ai〉 = Pai = ai + bi = ai .
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For degenerate extremal

combinatorics, 206
Fourier decomposition, 151
Gluing, 132, 133, 138, 150
Harmonic, 147
Labeling canonically, 211
Lasserre hierarchy, 144

Symmetry reduction, 171
Möbius transformation, 139
Notation, xviii
Quantum flag, 134
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Razborov’s hierarchy, 222
Symmetry reduction, 226

Specht flags, 191
Subgraph density

Induced, 137
Non-induced, 130
Swapping, 139

Sums-of-squares, 132, 135
Symmetries, 143
Unlabeling, 135, 138

Fourier analysis, 147

Gatermann Parrilo reduction, 156,
160

Graph
Hypergraph, 93, 174
Module, 175
Notation, xviii
Profile of, 195
Specht graph, 191
Triangle free, 130

Hilbert Cube, 131
Hilbert’s trick, 111

Lasserre hierarchy, 10
Comparison with Razborov’s

hierarchy, 225
Vertex truncated, 216

Möbius transformation, 139
For symmetry reducton, 220

Mantel’s theorem, 130
Lower bound, 132
Upper bound, 135

Module, 15, see also Representation
Flag module, 175

Decomposition, 179

Irreducible, 158
Permutation module, 164
Specht, 165

Optimization
Conic, 3, 6, 23
Convex, 1
Doubly nonnegative, 21, 30, 35,

46
Dual problem, 3, 76
Linear, 4, 77
Polynomial, 12, 93, 143, 156,

see also Sums-of-squares
Primal problem, 3, 6
Quadratic, convex, 45
Second order cone, 75
Semidefinite, 5, 6, 8, 13
Weak duality, 4

Projection, 23
For symmetry reduction, 23
Nonnegative projection

matrices, 31
Characterization of, 229

orthogonal, 25
Preserving doubly

nonnegativity, 30
Preserving positive

semidefiniteness, 33
Proper convex cone, 3

Quadratic assignment problem, 22,
43

Relaxations, 44
Symmetry reduction, 52

Application to QAPLib, 54
Queuing theory, 98
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Connection to the polynomial
optimization problem, 99

Redundancy scheduling, 99

Recursion, 115, 153, 184, see
Recursion

Relaxation, 7
By adding dual constraints, 77
Of stable set, 7
Of the quadratic assignment

problem, 44
Comparison, 47
Convex quadratic, 45
Projected eigenvalue, 44
Semidefinite, 46

Representation, 15, see also Module
Maschke’s Theorem, 159
Module, 158
Multiplicity space, 167
Of the symmetric group, 163

Permutation module, 164
Specht-module, 165
Young-tableau, 164
Young-tableau, generalized,

semistandard, 166
Young-tabloid, 164

Schur’s Lemma, 159
Symmetry adapted basis, 160

Multiplying basis elements,
168

Of permutation modules, 166
Representation theory

Notation, xvii
Reynolds operator, 156, 180

Schur complement, 48, 120
Sidorenko’s conjecture, 153

Simulated annealing, 80
Software

For flag sums-of-squares, 211
For symmetry reduction, 35

Sums-of-squares, 12, 132, 156
For flags, 144

Symmetric circulant matrices, 68
Symmetric circulant matrix

Block-diagonalization, 73
Symmetry reduction, 1, 14, 95

As a proving tool, 101
Block-diagonalization, 17, 159

Analytical, 73
Computational, 37
Of the Lasserre hierarchy for

flags, 191
Of the Terwilliger algebra,

104
By Möbius transformation, 220
Combination with facial

reduction, 39
For polynomial optimization,

156
Group symmetry reduction, 14
Jordan reduction, 23–29

Analytical, 69
Application to the QAP, 52
Constraint Set Invariance, 23
Extension to the doubly

nonnegative cone, 30
Lasserre hierarchy for flags, 171
Lasserre hierarchy for stable

set, 11
Of the relaxation of the QAP, 52
Of the Theta function, 9

By Jordan reduction, 33
Software, 35
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Terwilliger algebra, 95, 103
Block-diagonalization, 104

Theta function, 7, 21
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Of Erdős-Rényi graphs, 34
Symmetries, 9
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