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General form of quadratic assigment problems (QAPs)

QAP in Koopmans-Beckmann form

QAP(A,B) = min
ϕ∈Sn

n∑
i,j=1

aijbϕ(i)ϕ(j)

where

• A = (aij),B = (bij) ∈ Rn×n

• Sn is the set of all permutations of n elements

We will study a specific example from energy minimization.

1



QAP example: Particles on a grid

Problem:
• Minimize the total energy
of repulsive particles

• Periodic tiling of size
n1 × n2

• Density m/(n1n2)

Figure 1: A n1 × n2 = 8× 8 grid
tiling with m = 4
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Tiling to torus

Figure 2: Example of a n1 × n2 = 8× 8 grid tiling with m = 4, and the
corresponding toroidal interpretation of the 8× 8 grid.
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Potential function and formal definition

Choice of potential function and metric, here:

f(x1,y1),(x2,y2) =
1

dLee((x1, y1), (x2, y2))
,

and fi,i = 0, where dLee is the Lee distance given by the
shortest path metric on the toroidal grid.

Thus for fixed n1,n2,m the problem is

min
T⊆[n1]×[n2]

|T|=m

∑
a,b∈T

fa,b.
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Reformulation as QAP

For the the reformulation as QAP we assume an ordering on
the grid points. We set n = n1n2.

Let A,B ∈ Rn×n be the matrices

Aij =

1, if i, j ≤ m

0, otherwise.
, Bi,j = fi,j = f(xi,yi),(xj,yj).

Then their corresponding QAP is the energy minimization
problem:

min
T⊆[n1]×[n2]

|T|=m

∑
a,b∈T

fa,b = min
π∈Sn

n∑
i,j=1

aijbπ(i)π(j)
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Complexity of QAPs

QAPs are NP-complete.

⇒ Instead look for approximations, heuristics and bounds.

We consider three known bounds:

• A projected eigenvalue bound
• A convex quadratic programming bound
• A semidefinite programming bound
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Projection-based bounds

• V ∈ Rn×(n−1) s.t. R(V) = e⊥ and VTV = In−1,
• Ã = VTAV , B̃ = VTBV ,
• λÃ and µB̃ are the vectors of eigenvalues of Ã and B̃
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Projected eigenvalue bound

Proposition (Hadley, Rendl, Wolkowicz (1990))

Set D = 2
nAee

TB. The projection lower bound for the
symmetric QAP(A,B) is given by

PB(A,B) := 〈λÃ, µB̃〉
− + min

ϕ∈Sn

n∑
i=1

diϕ(i) −
(eTAe)(eTBe)

n2
,

where 〈x, y〉− = minϕ∈Sn
∑n

i=1 xϕ(i)yi.

8



Convex quadratic programming bound

Let A and B be symmetric matrices, and set

(S∗, T∗) = argmax
{

tr(S+ T) : B̃⊗ Ã− I⊗ S− T ⊗ I < 0
}
,

so the matrix

Q̂ := B̃⊗ Ã− I⊗ S∗ − T∗ ⊗ I < 0

is positive semidefinite, and tr(S∗ + T∗) = 〈λÃ, µB̃〉
−.
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Convex quadratic programming bound (ctd.)

Proposition (Anstreicher, Brixius (2001))

A bound at least as good as PB(A,B) is

QPB(A,B) := min
X≥0 doubly stochastic

X= 1
nee

T+VYVT
y=vec(Y)

yTQ̂y + 〈λÃ, µB̃〉
−

+
2
n

tr (BJAX)− (eTAe)(eTBe)
n2

.
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Semidefinite bound

Proposition (Povh, Rendl (2009), equivalent to earlier bound by Zhao,
Karisch, Rendl, Wolkowicz (1998))
The following is a semidefinite relaxation of QAP(A,B) for
symmetric A,B:

SDPQAP(A,B) := min 〈B⊗ A, Y〉
s.t. 〈I⊗ Ejj, Y〉 = 1 for j = 1, . . . ,n,
〈Ejj ⊗ I, Y〉 = 1 for j = 1, . . . ,n,
〈I⊗ (J− I) + (J− I)⊗ I, Y〉 = 0,
〈J⊗ J, Y〉 = n2,

Y ∈ Sn2+ ∩ Rn
2×n2

≥0 .
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Bound comparison

Theorem
For symmetric matrices A and B we have

PB(A,B) ≤ QPB(A,B) ≤ SDPQAP(A,B) ≤ QAP(A,B).

Proof idea.

• We only need to show that QPB(A,B) ≤ SDPQAP(A,B)
• We prove the inequality for a weaker SDP bound, which
uses the projection of the other bounds.

We now compare these bounds to an eigenvalue bound for the
energy minimization problem.
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Eigenvalue bound for energy minimization

The relaxation

EVB(n,m,B) := min xTBx
s.t. xTx = xTe = m,

gives a closed-form lower bound for the energy minimization
problem in terms of eigenvalues of B.

Proposition (Bouman, Draisma, Van Leeuwaarden (2013))
Let λmin be the smallest eigenvalue of B, and λ1 = eT1Be. Then

EVB(n,m,B) = λ1
m2

n
+ λmin

(
m− m2

n

)
is a lower bound for the potential energy of m particles.
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Bound comparison

Theorem
For all n1,n2,m, with A,B as before, we have

PB(A,B)=QPB(A,B)=EVB(n,m,B) ≤ SDPQAP(A,B).

Only the SDP bound has a chance of improving existing
bounds.

Problem: The matrices appearing in the SDP bound are of size
(n1n2)2 × (n1n2)2.

Solution: Symmetry reduction (in form of a Jordan reduction)
to size O(

√
n1n2)×O(

√
n1n2).
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Results



Bounds

n1 = n2 m PB(A,B) SDPQAP(A,B) Upper bounds from
simulated annealing

6

1 −1.51 0.00 0.00
2 −2.13 0.33 0.33
4 −0.64 3.00 3.00
12 41.47 44.00 44.00
18 111.00 111.00 111.00

7 1 −1.54 0.00 0.00
2 −2.29 0.33 0.33

8

1 −1.67 0.00 0.00
2 −2.65 0.25 0.25
4 −2.57 2.27 2.27
32 286.67 286.67 286.67

10

1 −1.72 0.00 0.00
2 −2.88 0.20 0.20
4 −3.57 1.81 1.81
20 70.23 81.43 81.43
50 588.33 588.33 588.33 15



Optimal arrangements on a 6× 6 grid

m = 1 m = 2 m = 4

m = 12 m = 18 16



Optimal arrangements on a 7× 7 grid

m = 1 m = 2
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Optimal arrangements on a 8× 8 grid

m = 1 m = 2

m = 4 m = 32
18



Optimal arrangements on a 10× 10 grid

m = 1 m = 2

m = 4 m = 20

m = 50
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Any questions?
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Weaker SDP bound

SDPPB(A,B) := min 〈B̃⊗ Ã,U〉+ 2
n

vec(VTBJAV)Tu

+
1
n2

(eTAe)(eTBe)

s.t.
(
1 uT

u U

)
< 0,

〈Eij ⊗ In−1,U〉 = δij ∀i, j = 1, . . . ,n− 1,
〈In−1 ⊗ Eij,U〉 = δij ∀i, j = 1, . . . ,n− 1,

(V ⊗ V)u ≥ − 1
n
e⊗ e.



Symmetry Reduction



Conic form

We assume the problem is given in the form

P = min 〈C, X〉 D = min 〈X0, Y〉
s.t. X ∈ X0 + L s.t. Y ∈ C + L⊥

X ∈ K Y ∈ K∗.

where

• K ⊆ V is a convex cone in a real vectorspace,
• X0 and C are elements of V ,
• L ⊆ V a linear subspace.



Constraint set invariance conditions (CSICs)

Definition
A projection P : V → V fulfills the CSICs for (K, X0 + L, C) if

(i) P(K) ⊆ K (the projection is positive),
(ii) P(X0 + L) ⊆ X0 + L,
(iii) P∗(C + L⊥) ⊆ C + L⊥,

where P∗ is the adjoint of P.

If P is an orthogonal projection PS to a linear subspace S, we
call S admissible.



Symmetry reduction

For admissible S, the following programs have the same
objective values as P and D:

min 〈PS(C), X〉 min 〈PS(X0), Y〉
s.t. X ∈ PS(X0) + L ∩ S s.t. Y ∈ PS(C) + L⊥ ∩ S

X ∈ K ∩ S Y ∈ K∗ ∩ S



Jordan reduction

Proposition (Permenter (2017))
If V is an euclidian Jordan-algebra and K its cone of squares,
then an unital subspace S ⊆ V is admissible if

S 3 PL(C),PL⊥(X0),
S ⊇ PL(S),
S ⊇ {X2 | X ∈ S} [S is a subalgebra.].

The converse holds if J is special.

Its enough to know here that Sn is a special euclidian
Jordan-algebra and its cone of squares is Sn+.



Extension to the doubly nonnegative cone

Proposition
An orthogonal projection PS onto an unital subspace S ⊆ V
fulfills

PS(Dn) ⊆ Dn

if and only if
PS(Sn+) ⊆ Sn+

and S has a basis of nonnegative matrices with disjoint
supports.



A simple algorithm

We further restrict ourselves to a Partition P = S. Then the
following algorithm gives us the optimal admissible partition
subspace:

P← part(PL(C)) ∧ part(PL⊥(X0))
repeat

P← P ∧ part(PL(P))
P← P ∧ part(span{X2 | X ∈ P})

until converged;

Here part returns the partition given by unique entries, and ∧
the smallest refinement of two partitions.


