Minimum energy configurations on a toric lattice as a quadratic assignment problem.

Daniel Brosch (joint work with Etienne de Klerk) August 1, 2019

Tilburg University

General form of quadratic assigment problems (QAPs)

QAP in Koopmans-Beckmann form

$$QAP(A, B) = \min_{\varphi \in S_n} \sum_{i,j=1}^n a_{ij} b_{\varphi(i)\varphi(j)}$$

where

- $A = (a_{ij}), B = (b_{ij}) \in \mathbb{R}^{n \times n}$
- S_n is the set of all permutations of n elements

We will study a specific example from energy minimization.

QAP example: Particles on a grid

Problem:

- Minimize the total energy of repulsive particles
- Periodic tiling of size $n_1 \times n_2$
- Density $m/(n_1n_2)$

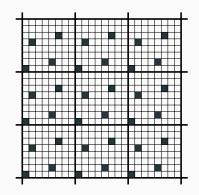


Figure 1: A $n_1 \times n_2 = 8 \times 8$ grid tiling with m = 4

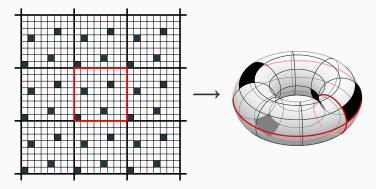


Figure 2: Example of a $n_1 \times n_2 = 8 \times 8$ grid tiling with m = 4, and the corresponding toroidal interpretation of the 8×8 grid.

Choice of potential function and metric, here:

$$f_{(x_1,y_1),(x_2,y_2)} = \frac{1}{d_{\text{Lee}}((x_1,y_1),(x_2,y_2))},$$

and $f_{i,i} = 0$, where d_{Lee} is the **Lee distance** given by the shortest path metric on the toroidal grid.

Thus for fixed n_1, n_2, m the problem is

$$\min_{\substack{T\subseteq [n_1]\times [n_2]\\|T|=m}}\sum_{a,b\in T}f_{a,b}.$$

Reformulation as QAP

For the the reformulation as QAP we assume an ordering on the grid points. We set $n = n_1 n_2$.

Let $A, B \in \mathbb{R}^{n \times n}$ be the matrices

$$A_{ij} = \begin{cases} 1, & \text{if } i, j \leq m \\ 0, & \text{otherwise.} \end{cases}, \qquad B_{i,j} = f_{i,j} = f_{(x_i, y_i), (x_j, y_j)}.$$

Then their corresponding QAP is the energy minimization problem:

$$\min_{\substack{T \subseteq [n_1] \times [n_2] \\ |T| = m}} \sum_{a, b \in T} f_{a, b} = \min_{\pi \in S_n} \sum_{i, j=1}^n a_{ij} b_{\pi(i)\pi(j)}$$

QAPs are NP-complete.

 \Rightarrow Instead look for approximations, heuristics and bounds.

We consider three known bounds:

- A projected eigenvalue bound
- A convex quadratic programming bound
- A semidefinite programming bound

• $V \in \mathbb{R}^{n \times (n-1)}$ s.t. $\mathcal{R}(V) = e^{\perp}$ and $V^T V = I_{n-1}$,

•
$$\tilde{A} = V^T A V, \, \tilde{B} = V^T B V,$$

+ $\lambda_{\tilde{A}}$ and $\mu_{\tilde{B}}$ are the vectors of eigenvalues of \tilde{A} and \tilde{B}

wh

Proposition (Hadley, Rendl, Wolkowicz (1990))

Set $D = \frac{2}{n}Aee^{T}B$. The projection lower bound for the symmetric QAP(A, B) is given by

$$PB(A, B) := \langle \lambda_{\tilde{A}}, \mu_{\tilde{B}} \rangle^{-} + \min_{\varphi \in S_n} \sum_{i=1}^{n} d_{i\varphi(i)} - \frac{(e^{T}Ae)(e^{T}Be)}{n^{2}},$$

ere $\langle x, y \rangle^{-} = \min_{\varphi \in S_n} \sum_{i=1}^{n} x_{\varphi(i)} y_{i}.$

Let A and B be symmetric matrices, and set

$$(S^*, T^*) = \arg \max \left\{ \operatorname{tr}(S+T) \colon \tilde{B} \otimes \tilde{A} - I \otimes S - T \otimes I \succeq 0 \right\},$$

so the matrix

$$\hat{Q} := \tilde{B} \otimes \tilde{A} - I \otimes S^* - T^* \otimes I \succcurlyeq 0$$

is positive semidefinite, and $tr(S^* + T^*) = \langle \lambda_{\tilde{A}}, \mu_{\tilde{B}} \rangle^-$.

Proposition (Anstreicher, Brixius (2001))

A bound at least as good as PB(A, B) is

$$QPB(A, B) := \min_{\substack{X \ge 0 \text{ doubly stochastic} \\ X = \frac{1}{n}ee^T + VYV^T \\ y = \text{vec}(Y)}} y^T \hat{Q}y + \langle \lambda_{\tilde{A}}, \mu_{\tilde{B}} \rangle^-$$
$$+ \frac{2}{n} \text{tr} (BJAX) - \frac{(e^T A e)(e^T B e)}{n^2}.$$

Semidefinite bound

Proposition (Povh, Rendl (2009), equivalent to earlier bound by Zhao, Karisch, Rendl, Wolkowicz (1998))

The following is a semidefinite relaxation of QAP(A, B) for symmetric A, B:

 $\begin{aligned} \text{SDPQAP}(A,B) &:= \min \ \langle B \otimes A, Y \rangle \\ \text{s.t.} \ \langle I \otimes E_{jj}, Y \rangle &= 1 \text{ for } j = 1, \dots, n, \\ \langle E_{jj} \otimes I, Y \rangle &= 1 \text{ for } j = 1, \dots, n, \\ \langle I \otimes (J-I) + (J-I) \otimes I, Y \rangle &= 0, \\ \langle J \otimes J, Y \rangle &= n^2, \\ Y \in S^{n^2}_+ \cap \mathbb{R}^{n^2 \times n^2}_{\geq 0}. \end{aligned}$

Bound comparison

Theorem

For symmetric matrices A and B we have

```
PB(A, B) \leq QPB(A, B) \leq SDPQAP(A, B) \leq QAP(A, B).
```

Proof idea.

- We only need to show that $QPB(A, B) \leq SDPQAP(A, B)$
- We prove the inequality for a weaker SDP bound, which uses the projection of the other bounds.

We now compare these bounds to an eigenvalue bound for the energy minimization problem.

Eigenvalue bound for energy minimization

The relaxation

$$EVB(n, m, B) := \min x^{T}Bx$$

s.t. $x^{T}x = x^{T}e = m$,

gives a closed-form lower bound for the energy minimization problem in terms of eigenvalues of *B*.

Proposition (Bouman, Draisma, Van Leeuwaarden (2013))

Let λ_{\min} be the smallest eigenvalue of B, and $\lambda_1 = e_1^T Be$. Then

$$EVB(n,m,B) = \lambda_1 \frac{m^2}{n} + \lambda_{\min}\left(m - \frac{m^2}{n}\right)$$

is a lower bound for the potential energy of m particles.

Bound comparison

Theorem

For all n₁,n₂,m, with A,B as before, we have

```
PB(A, B) = QPB(A, B) = EVB(n, m, B) \le SDPQAP(A, B).
```

Only the SDP bound has a chance of improving existing bounds.

Problem: The matrices appearing in the SDP bound are of size $(n_1n_2)^2 \times (n_1n_2)^2$.

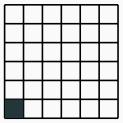
Solution: Symmetry reduction (in form of a Jordan reduction) to size $\mathcal{O}(\sqrt{n_1n_2}) \times \mathcal{O}(\sqrt{n_1n_2})$.

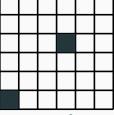
Results

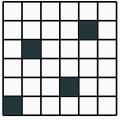
Bounds

$n_1 = n_2$	т	<i>PB</i> (<i>A</i> , <i>B</i>)	SDPQAP(A, B)	Upper bounds from simulated annealing
6	1	-1.51	0.00	0.00
	2	-2.13	0.33	0.33
	4	-0.64	3.00	3.00
	12	41.47	44.00	44.00
	18	111.00	111.00	111.00
7	1	-1.54	0.00	0.00
	2	-2.29	0.33	0.33
8	1	-1.67	0.00	0.00
	2	-2.65	0.25	0.25
	4	-2.57	2.27	2.27
	32	286.67	286.67	286.67
10	1	-1.72	0.00	0.00
	2	-2.88	0.20	0.20
	4	-3.57	1.81	1.81
	20	70.23	81.43	81.43
	50	588.33	588.33	588.33

Optimal arrangements on a 6×6 grid

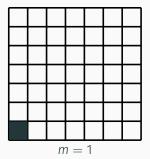


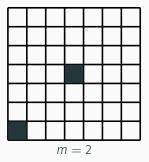




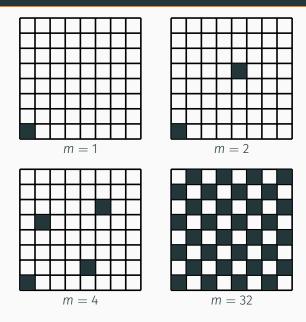
m = 1

Optimal arrangements on a 7×7 grid

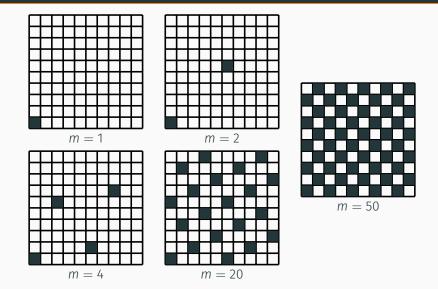




Optimal arrangements on a 8×8 grid



Optimal arrangements on a 10 \times 10 grid



Any questions?

$$SDPPB(A, B) := \min \langle \tilde{B} \otimes \tilde{A}, U \rangle + \frac{2}{n} \operatorname{vec}(V^{\mathsf{T}}BJAV)^{\mathsf{T}}U \\ + \frac{1}{n^2} (e^{\mathsf{T}}Ae)(e^{\mathsf{T}}Be)$$

s.t.
$$\begin{pmatrix} 1 & u^T \\ u & U \end{pmatrix} \geq 0,$$

 $\langle E_{ij} \otimes I_{n-1}, U \rangle = \delta_{ij} \quad \forall i, j = 1, \dots, n-1,$
 $\langle I_{n-1} \otimes E_{ij}, U \rangle = \delta_{ij} \quad \forall i, j = 1, \dots, n-1,$
 $(V \otimes V)u \geq -\frac{1}{n}e \otimes e.$

Symmetry Reduction

We assume the problem is given in the form

$$\begin{aligned} \mathbf{P} &= \min \ \langle \mathcal{C}, X \rangle & \mathbf{D} &= \min \ \langle X_0, Y \rangle \\ \text{s.t.} \ X &\in X_0 + \mathcal{L} & \text{s.t.} \ Y &\in \mathcal{C} + \mathcal{L}^{\perp} \\ X &\in \mathcal{K} & Y &\in \mathcal{K}^*. \end{aligned}$$

where

- + $\mathcal{K} \subseteq \mathcal{V}$ is a convex cone in a real vectorspace,
- \cdot X₀ and C are elements of \mathcal{V} ,
- $\boldsymbol{\cdot} \ \mathcal{L} \subseteq \mathcal{V}$ a linear subspace.

Definition

A projection $P: \mathcal{V} \to \mathcal{V}$ fulfills the CSICs for $(\mathcal{K}, X_0 + \mathcal{L}, C)$ if

(i) $P(\mathcal{K}) \subseteq \mathcal{K}$ (the projection is positive),

(ii)
$$P(X_0 + \mathcal{L}) \subseteq X_0 + \mathcal{L}$$
,

(iii)
$$P^*(C + \mathcal{L}^{\perp}) \subseteq C + \mathcal{L}^{\perp}$$
,

where P^* is the adjoint of P.

If P is an orthogonal projection P_S to a linear subspace S, we call S admissible.

For admissible *S*, the following programs have the same objective values as **P** and **D**:

$$\begin{array}{ll} \min \ \langle P_{S}(C), X \rangle & \min \ \langle P_{S}(X_{0}), Y \rangle \\ \text{s.t.} \ X \in P_{S}(X_{0}) + \mathcal{L} \cap S & \text{s.t.} \ Y \in P_{S}(C) + \mathcal{L}^{\perp} \cap S \\ X \in \mathcal{K} \cap S & Y \in \mathcal{K}^{*} \cap S \end{array}$$

Jordan reduction

Proposition (Permenter (2017))

If $\mathcal V$ is an euclidian Jordan-algebra and $\mathcal K$ its cone of squares, then an unital subspace $S\subseteq \mathcal V$ is admissible if

$$\begin{split} S &\ni P_{\mathcal{L}}(C), P_{\mathcal{L}^{\perp}}(X_0), \\ S &\supseteq P_{\mathcal{L}}(S), \\ S &\supseteq \{X^2 \mid X \in S\} \quad [S \text{ is a subalgebra.}]. \end{split}$$

The converse holds if J is special.

Its enough to know here that S^n is a special euclidian Jordan-algebra and its cone of squares is S^n_+ .

Proposition

An orthogonal projection P_S onto an unital subspace $S\subseteq \mathcal{V}$ fulfills

 $P_{S}(D^{n}) \subseteq D^{n}$

if and only if

$$P_{S}(S^{n}_{+}) \subseteq S^{n}_{+}$$

and S has a basis of nonnegative matrices with disjoint supports.

A simple algorithm

We further restrict ourselves to a Partition P = S. Then the following algorithm gives us the optimal admissible partition subspace:

 $P \leftarrow \operatorname{part}(P_{\mathcal{L}}(C)) \land \operatorname{part}(P_{\mathcal{L}^{\perp}}(X_0))$ repeat $\mid P \leftarrow P \land \operatorname{part}(P_{\mathcal{L}}(P))$ $P \leftarrow P \land \operatorname{part}(\operatorname{span}\{X^2 \mid X \in P\})$ until converged;

Here part returns the partition given by unique entries, and \land the smallest refinement of two partitions.