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General form of quadratic assigment problems (QAPs)

QAP in Koopmans-Beckmann form

n
QAP(A, B) = min > _ ajby(,)
i j=1

where

A= (G,‘j), B = (b,‘j) e RN
- Sy is the set of all permutations of n elements

We will study a specific example from energy minimization.



QAP example: Particles on a grid
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- Minimize the total energy
of repulsive particles
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Figure 1: Any x n, = 8 x 8 grid
tiling with m = 4
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Tiling to torus
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Figure 2: Example of a ny x n, = 8 x 8 grid tiling with m = 4, and the
corresponding toroidal interpretation of the 8 x 8 grid.
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Potential function and formal definition

Choice of potential function and metric, here:

1
" dree((1, Y1), (2, ¥2))

f(X1 ¥1),(X2:y2)

and f;; = 0, where drc. is the Lee distance given by the
shortest path metric on the toroidal grid.

Thus for fixed nq,ny,m the problem is

min .
TC[m]x[n] Z fop

|T\:m a,beT



Reformulation as QAP

For the the reformulation as QAP we assume an ordering on
the grid points. We set n = nin,.

Let A, B € R™" be the matrices

) 1, ifi,j<m B —f —f
IJ O, otherwise. ’ 1) 1) (th!)’(szyj).
Then their corresponding QAP is the energy minimization
problem:

n
e 2_ fap = min >, Gibryrg)

[Tl=m ~ a:beT =1



Complexity of QAPs

QAPs are NP-complete.

= Instead look for approximations, heuristics and bounds.

We consider three known bounds:

- A projected eigenvalue bound
- A convex quadratic programming bound
- A semidefinite programming bound



Projection-based bounds

- VeR™-N st R(V) =etand VTV = I,_4,
- A=VTAV, B=VTBY,

- Xz and g are the vectors of eigenvalues of A and B



Projected eigenvalue bound

Proposition (Hadley, Rendl, Wolkowicz (1990))

SetD = %AeeTB. The projection lower bound for the
symmetric QAP(A, B) is given by

n T T
B ) e'Ae)(e'Be
PB(A, B) = (g, i15) ™ + min }  dipg — (37(2)
i=1

where (x,y)” = minges, > Xe(i)Yi-



Convex quadratic programming bound

Let A and B be symmetric matrices, and set
(5*,7%) :argmax{tr(5+T): Boid-10S-Tol: o},
so the matrix
Q=BRA-I1®S* -T*®I%0

is positive semidefinite, and tr(S* 4+ T*) = (A, ug) ~-



Convex quadratic programming bound (ctd.)

Proposition (Anstreicher, Brixius (2001))

A bound at least as good as PB(A,B) Is

PB(A, B) := i TQy + Az, pz)~
2 ( ) X>0 doutr)?y”;tochasticy Qy+< A 'uB>
X=1eel +VyVT
y=vec(Y)

(eTAe)(eBe)

2
—tr (BJAX) — .
+nr(1 ) 2
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Semidefinite bound

Proposition (Povh, Rendl (2009), equivalent to earlier bound by Zhao,
Karisch, Rendl, Wolkowicz (1998))
The following is a semidefinite relaxation of QAP(A, B) for

symmetric A, B:

SDPQAP(A, B) = min
s.t.

(BRA,Y)
(I®E;,Y)="1forj=1,...,n,
(Ej@LY)y=1forj=1,...,n,
(l® ( N+0U-NelY)=0,
JeJ,Yy=n?

Y € ST NRIE™

n



Bound comparison

Theorem
For symmetric matrices A and B we have

PB(A, B) < QPB(A, B) < SDPQAP(A, B) < QAP(A, B).

Proof idea.
- We only need to show that QPB(A, B) < SDPQAP(A, B)
- We prove the inequality for a weaker SDP bound, which
uses the projection of the other bounds.

O]

We now compare these bounds to an eigenvalue bound for the
energy minimization problem.
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Eigenvalue bound for energy minimization

The relaxation

EVB(n,m,B) := min x'Bx

st. X' x=x"e=m,

gives a closed-form lower bound for the energy minimization
problem in terms of eigenvalues of B.

Proposition (Bouman, Draisma, Van Leeuwaarden (2013))
Let Amin be the smallest eigenvalue of B, and \; = el Be. Then

m? m?2
EVB(n,m,B) = AqT + Amin <m — n>

Is a lower bound for the potential energy of m particles.
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Bound comparison

Theorem
For all ny,n,,m, with A,B as before, we have

PB(A, B)=QPB(A, B)=EVB(n, m, B) < SDPQAP(A, B).
Only the SDP bound has a chance of improving existing
bounds.

Problem: The matrices appearing in the SDP bound are of size

Solution: Symmetry reduction (in form of a Jordan reduction)
to size



Results




Bounds

Upper bounds from

ny=n m PB(A, B SDPQAP(A, B . .
! 2 (. B) QAP(A, B) simulated annealing
1 —1.51 0.00 0.00
2 —2.13 0.33 0.33
6 4 —0.64 3.00 3.00
12 41.47 44.00 44.00
18 111.00 111.00 111.00
7 1 —1.54 0.00 0.00
2 —2.29 0.33 0.33
1 —1.67 0.00 0.00
8 2 —2.65 0.25 0.25
4 —2.57 2.27 2.27
32 286.67 286.67 286.67
1 —1.72 0.00 0.00
2 —2.88 0.20 0.20
10 4 —3.57 1.81 1.81
20 70.23 81.43 81.43
50 588.33 588.33 588.33
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Optimal arrangements on a 6 x 6 grid




Optimal arrangements on a 7 x 7 grid




Optimal arrangements on a 8 x 8 grid
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Optimal arrangements on a 10 x 10 grid




Any questions?



Weaker SDP bound

. 2
SDPPB(A,B) := min (B®A,U) + Evec(VTBJAV)Tu
1

+

1 ul
i ( ) -0,
u U

<E[j®ln—17u>:5[j Vi,j=1,...,n—1,
</n_1®EU7U>:5U Vi,j:1,...,ﬂ—1,

~(e’Ae)(e'Be)

=

1
(Ve Viu > —Ee®e.



Symmetry Reduction



Conic form

We assume the problem is given in the form

P =min (C,X) D = min (Xp,Y)
st. XeXo+ L st. YeC+ Lt
Xek YeK”.

where

- K C Visaconvex cone in a real vectorspace,
- Xp and C are elements of V,

- L CV alinear subspace.



Constraint set invariance conditions (CSICs)

Definition
A projection P: ¥V — V fulfills the CSICs for (KC, Xo + £, C) if

(i) P(K) C K (the projection is positive),
(i) P(Xo + L) C Xo + L,
(ii) P*(C+ L) CC+ Lt

where P* is the adjoint of P.

If Pis an orthogonal projection Ps to a linear subspace S, we
call S admissible.



Symmetry reduction

For admissible S, the following programs have the same
objective values as P and D:

min (Ps(C), X) min (Ps(Xo),Y)
st. X € Ps(Xo) +£LNS st. YePs(C)+LtnsS
Xekns YeK*nS



Jordan reduction

Proposition (Permenter (2017))
If V is an euclidian Jordan-algebra and K its cone of squares,
then an unital subspace S C V is admissible if

S>3 Pﬁ(C),Pﬂi(XO),
S = 'Dﬁ(s)a
SO {X° | X€S} [Sisasubalgebral.

The converse holds if | is special.

Its enough to know here that S" is a special euclidian
Jordan-algebra and its cone of squares is S']..



Extension to the doubly nonnegative cone

Proposition
An orthogonal projection Ps onto an unital subspace S C V
fulfills
Ps(D") C D"
if and only if

Ps(sh) € ST

and S has a basis of nonnegative matrices with disjoint
supports.



A simple algorithm

We further restrict ourselves to a Partition P = S. Then the
following algorithm gives us the optimal admissible partition
subspace:

P < part(P.(C)) A part(P,.(Xo))
repeat
P < P A part(P.(P))

P < P A part(span{X? | X € P})
until converged,;

Here part returns the partition given by unique entries, and A
the smallest refinement of two partitions.



