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Example problem: Triangle free graphs

Maximize the edge density of a graph while avoiding triangles, as

the number of vertices n approaches infinity.

1



Lower bound for the edge density in triangle free graphs

We can determine a lower bound by constructing a sequence of

triangle free graphs.

But how can we determine an upper bound?
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Flag-Algebras [Razborov 2007]

What happens when we multiply two densities?

In the limit we simply glue together the two graphs!

The Flag-Algebra of graphs

Extend this action to partially labelled graphs (”Flags”) and

extend to a vectorspace over the reals to obtain the Flag-Algebra

of graphs.
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Flag-Algebras: Examples
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Flag-Algebras: Unlabeling

We can unlabel a Flag by symmetrization.
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Flag-Sums of Squares

As with polynomial optimization, sums of squares of linear

combinations of graph densities are nonnegative

∑
i

∑
j

cijd(Gij)

2

≥ 0,

and can be optimized over by semidefinite programming.
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Triangle free graphs: Upper bound via Flag-SOS

We saw earlier that

This bound is sharp:
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Problem 1: Efficiency

Flag-SOS can be solved using semidefinite programming

relaxations, but the hierarchies grow very quickly!

But: The hierarchies have some symmetries!

Example for symmetries between Flags

are all different Flags, i.e. have their own rows and columns in

the SDP.
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Exploiting the symmetry: Back to polynomial optimization

In order to exploit the symmetry, we first rewrite the (non-limit)

problems as polynomial optimization problems.

Graphs as monomials

We can describe graphs by monomials in binary variables xij with

i < j , which correspond to edges.
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Exploiting the symmetry: Back to polynomial optimization

Graph densities as symmetric polynomials

Graph densities (and their linear combinations) are exactly the

fully symmetric polynomials according to the action

σ(xij) = xσ(i)σ(j),

for σ ∈ Sn.

10



Symmetry reduction

The symmetry was partially exploited by Raymond, Saunderson,

Singh and Thomas in 2017, and it was shown that the reduced

hierarchies converge to the usual Flag-SOS hierarchies.

We fully exploited the symmetry to obtain more efficient, but

equivalent hierarchies.
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Symmetry reduction: main idea

• Semidefinite programming is convex.

• Convex combinations of optimal solutions are optimal

solutions.

• There exists a symmetric (= invariant) optimal solution (by

averaging over the symmetry).

• The set of invariant matrices forms a matrix algebra.

• These can be block-diagonalized by Artin-Wedderburn theory

(which was specialised to symmetry reduction for polynomial

optimization by Gatermann and Parrilo).
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Symmetry reduction: quotients of permutation modules

A very common approach for Sn symmetry reduction

Permutation modules Mλ are very well understood Sn-modules,

given by partitions λ. If we can find an isomorphism between

permutation modules and the underlying Sn-module (here the

polynomial ring with the action of Sn), we can easily determine

the block-diagonalization.

Here, such an isomorphism does not exist. But we can decompose

the polynomial ring into quotients of permutation modules:

R[Xij ] '
⊕

Graphs G up to isomorphism

Mλ(G )/F (G),

where F (G ) is a subgroup of Aut(G ), and acts on Mλ(G) by

permuting rows.
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Understanding quotients of permutation modules

First main result

We found an efficient algorithm to decompose quotients of the

form

Mλ/F

into irreducible Specht modules. This can then be used to

symmetry reduce a wide variety of problems with Sn symmetry.

Already found a different application to the crossing number of the

complete bipartite graph (joint work with Sven Polak).
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Reduced Flag-SOS

Second main result

We determined a fully symmetry reduced Flag-SOS hierarchy,

which is equivalent, but more efficient than the usual hierarchies.

Here vertices are not explicitly labeled, but instead grouped

together.
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Prioritizing small graphs

In practice one often has problems with small, dense graphs, for

example when working with induced subgraph densities.
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Prioritizing small graphs

We can determine different symmetry reduced hierarchies with only

small graphs by:

• Partially breaking symmetry for k � n:

Sk × Sn−k .

• Fully block-diagonalizing the small side and only considering

the trivial isotypic component of the bigger side:(⊕
i

V Sk
i

)
⊕ V

Sn−k

0 .

• Applying a Moebius transformation on the small part to

create additional orthogonal relations.

This results in a much sparser hierarchy only involving small, but

dense graphs.
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Flag-SOS software

We implemented a Julia library that implements the reduced

Flag-SOS hierarchies:

• Fully reduced limit hierarchies.

• Support for extensions to different Flag-Algebras, such as

permutations, directed graphs, hypergraphs, point order

types,. . .

• Can also generate hierarchies for fixed finite n or variable

finite n (with polynomial coefficients in the second variant).
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Problem 2: Flexibility

Flag-SOS are not useful for so-called degenerate problems. For

example,

Here the edge density approaches zero as n grows. Thus we are

instead interested in the rate at which the densities approach zero.
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Solving degenerate problems

One approach one can find in the literature is to construct a

sequence of SOS-certificates for each n.

Instead, we can determine different limit hierarchies by rescaling

variables depending on n. This allows for a single compact

certificate for the rate of densities in the limit.
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Degenerate problem certificate example
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Conclusion

• Fully symmetry reduced Flag-SOS hierarchies for both sparse

and dense graphs

• Extendable Flag-SOS Julia package implementing the

hierarchies

• Theory and algorithms for quotients of permutation modules

• New kind of limit hierarchies for degenerate problems

Preprint and Julia package should be online soon!
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